BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design of a self-learning multi-agent framework for the adaptation of modular production systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Scrimieri2021_IJAMT_Final.pdf (4.380Mb)
    Download
    Publication date
    2021
    Author
    Scrimieri, Daniele
    Afazov, S.M.
    Ratchev, S.M.
    Keyword
    Self-learning
    Adaptation
    Agents
    Assembly
    Architecture
    Rights
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Peer-Reviewed
    Yes
    Open Access status
    Gold
    
    Metadata
    Show full item record
    Abstract
    This paper presents the design of a multi-agent framework that aids engineers in the adaptation of modular production systems. The framework includes general implementations of agents and other software components for self-learning and adaptation, sensor data analysis, system modelling and simulation, as well as human-computer interaction. During an adaptation process, operators make changes to the production system, in order to increase capacity or manufacture a product variant. These changes are automatically captured and evaluated by the framework, building an experience base of adjustments that is then used to infer adaptation knowledge. The architecture of the framework consists of agents divided in two layers: the agents in the lower layer are associated with individual production modules, whereas the agents in the higher layer are associated with the entire production line. Modelling, learning, and adaptations can be performed at both levels, using a semantic model to specify the structure and capabilities of the production system. An evaluation of a prototype implementation has been conducted on an industrial assembly system. The results indicate that the use of the framework in a typical adaptation process provides a significant reduction in time and resources required.
    URI
    http://hdl.handle.net/10454/18512
    Version
    Published version
    Citation
    Scrimieri D, Afazov SM and Ratchev SM (2021) Design of a self-learning multi-agent framework for the adaptation of modular production systems. The International Journal of Advanced Manufacturing Technology. 115: 1745-1761.
    Link to publisher’s version
    https://doi.org/10.1007/s00170-021-07028-z
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.