BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Triple-layer Tissue Prediction for Cutaneous Skin Burn Injury: Analytical Solution and Parametric Analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Accepted manuscript (1.038Mb)
    Download
    Publication date
    2021-07
    Author
    Oguntala, George A.
    Indramohan, V.
    Jeffery, S.
    Abd-Alhameed, Raed A.
    Keyword
    Analytical method
    Bioheat model
    Burns
    Dual-phase lag model
    Laplace-Fourier transforms methods
    Rights
    © 2021 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    Open Access status
    Green
    
    Metadata
    Show full item record
    Abstract
    This paper demonstrates a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin burn injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag (DPL) bioheat model is employed and solved using joint integral transform (JIT) through Laplace and Fourier transforms methods. Parametric studies on the effects of skin tissue properties, initial temperature, blood perfusion rate and heat transfer parameters for the thermal response and exposure time of the layers of the skin tissue are carried out. The study demonstrates that the initial tissue temperature, the thermal conductivity of the epidermis and dermis, relaxation time, thermalisation time and convective heat transfer coefficient are critical parameters to examine skin burn injury threshold. The study also shows that thermal conductivity and the blood perfusion rate exhibits negligible effects on the burn injury threshold. The objective of the present study is to support the accurate quantification and assessment of skin burn injury for reliable experimentation, design and optimisation of thermal therapy delivery.
    URI
    http://hdl.handle.net/10454/18487
    Version
    Accepted manuscript
    Citation
    Oguntala G, Indramohan V, Jeffery S et al (2021) Triple-layer Tissue Prediction for Cutaneous Skin Burn Injury: Analytical Solution and Parametric Analysis. International Journal of Heat and Mass Transfer. 173: 120907.
    Link to publisher’s version
    https://doi.org/10.1016/j.ijheatmasstransfer.2021.120907
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.