BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Role of microRNA-145 in DNA damage signalling and senescence in vascular smooth muscle cells of Type 2 diabetic patients

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    hemmings_et_al_2021 (4.935Mb)
    Download
    Publication date
    2021-04-16
    Author
    Hemmings, K.E.
    Riches-Suman, Kirsten
    Bailey, M.A.
    O'Regan, D.J.
    Turner, N.A.
    Porter, K.E.
    Keyword
    Type 2 diabetes
    Saphenous vein
    Smooth muscle cells
    DNA damage
    Senescence
    MicroRNA
    MicroRNA-145
    Rights
    (c) 2021 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    Gold
    
    Metadata
    Show full item record
    Abstract
    Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38a. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38a signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.
    URI
    http://hdl.handle.net/10454/18477
    Version
    Published version
    Citation
    Hemmings KE, Riches-Suman K, Bailey MA et al (2021) Role of microRNA-145 in DNA damage signalling and senescence in vascular smooth muscle cells of Type 2 diabetic patients. Cells. 10(4): 919.
    Link to publisher’s version
    https://doi.org/10.3390/cells10040919
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.