Show simple item record

dc.contributor.advisorNeagu, Daniel
dc.contributor.advisorCampean, I. Felician
dc.contributor.authorParisi, Luca
dc.date.accessioned2021-04-01T09:27:16Z
dc.date.available2021-04-01T09:27:16Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/10454/18417
dc.description.abstractThis critical synopsis of prior work by Luca Parisi is submitted in support of a PhD by Published Work. The work focuses on deriving accurate, reliable and explainable clinical decision support systems as minimum clinically viable solutions leveraging Machine Learning (ML) and evolutionary algorithms, for the first time, to facilitate early diagnostic predictions of Parkinson's Disease and hypothermia in hospitals, as well as prognostic predictions of optimal postoperative recovery area and of chronic hepatitis. Despite the various pathological aetiologies, the underlying capability of ML-based algorithms to serve as a minimum clinically viable solution for predicting early diagnosis and prognosis has been thoroughly demonstrated. Feature selection (FS) is a proven method for increasing the performance of ML-based classifiers for several applications. Although advances in ML, such as Deep Learning (DL), have denied the usefulness of any extrinsic FS by incorporating it in their architectures, e.g., convolutional filters in convolutional neural networks, DL algorithms often lack the required explainability to be understood and interpreted by clinicians within the context of the diagnostic and prognostic tasks of interest. Their relatively complicated architectures, the hardware required for running them and the limited explainability or interpretability of their architectures, the decision-making process – although as assistive tools - driven by the algorithms’ training and predictive outcomes have hindered their application in a clinical setting. Luca Parisi’s work fills this translational research gap by harnessing the explainability of using traditional ML- and evolutionary algorithms-based FS methods for improving the performance of ML-based algorithms and devise minimum viable solutions for diagnostic and prognostic purposes. The work submitted here involves independent research work, including collaborative studies with Marianne Lyne Manaog (MedIntellego®) and Narrendar RaviChandran (University of Auckland). In particular, conciliating his work as a Senior Artificial Intelligence Engineer and volunteering commitment as the President and Research Committee Leader of a student-led association named the “University of Auckland Rehabilitative Technologies Association”, Luca Parisi decided to embark on most research works included in this synopsis to add value to society via accurate, reliable and explainable, hence clinically viable applications of AI. The key findings of these studies are: (i) ML-based FS algorithms are sufficient for devising accurate, reliable and explainable ML-based classifiers for aiding prediction of early diagnosis for Parkinson’s Disease and chronic hepatitis; (ii) evolutionary algorithms-based optimisation is a preferred method for improving the accuracy and reliability of decision support systems aimed at aiding early diagnosis of hypothermia; (iii) evolutionary algorithms-based optimisation methods enable to devise optimised ML-based classifiers for improving postoperative discharge; (iv) whilst ML-based algorithms coupled with ML based FS methods are the minimum clinically viable solution for binary classification problems, ML-based classifiers leveraging evolutionary algorithms for FS yield more accurate and reliable predictions, as reducing the search space and overlapping regions for tackling multi-class classification problems more effectively, which involve a higher number of degrees of freedom. Collectively, these findings suggest that, despite advances in ML, state-of-the-art ML algorithms, coupled with ML-based or evolutionary algorithms for FS, are enough to devise accurate, reliable and explainable decision support systems for performing both an early diagnosis and a prediction of prognosis of various pathologies.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectMachine learningen_US
dc.subjectGenetic algorithmsen_US
dc.subjectFeature selectionen_US
dc.subjectOptimisationen_US
dc.subjectClinical decision supporten_US
dc.subjectEarly diagnosisen_US
dc.subjectParkinson’s Diseaseen_US
dc.titleMachine Learning-based Feature Selection and Optimisation for Clinical Decision Support Systems. Optimal Data-driven Feature Selection Methods for Binary and Multi-class Classification Problems: Towards a Minimum Viable Solution for Predicting Early Diagnosis and Prognosisen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentFaculty of Engineering and Informaticsen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2019
refterms.dateFOA2021-04-01T09:27:16Z


Item file(s)

Thumbnail
Name:
Luca_Parisi_Final thesis.pdf
Size:
15.54Mb
Format:
PDF
Description:
PhD Thesis

This item appears in the following Collection(s)

Show simple item record