BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Ex-vivo recellularisation and stem cell differentiation of a decellularised rat dental pulp matrix

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    matoug_elwerfelli_et_al_2020 (2.376Mb)
    Download
    Publication date
    2020-12
    Author
    Matoug-Elwerfelli, M.
    Nazzal, H.
    Raif, E.M.
    Wilshaw, Stacy-Paul
    Esteves, F.
    Duggal, M.
    Keyword
    Tissue engineering
    Rat dental pulp
    Stem cell repopulation
    Rights
    (c) 2020 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    Gold
    
    Metadata
    Show full item record
    Abstract
    Implementing the principles of tissue engineering within the clinical management of non-vital immature permanent teeth is of clinical interest. However, the ideal scaffold remains elusive. The aim of this work was to assess the feasibility of decellularising rat dental pulp tissue and evaluate the ability of such scaffold to support stem cell repopulation. Rat dental pulps were retrieved and divided into control and decellularised groups. The decellularisation protocol incorporated a low detergent concentration and hypotonic buffers. After decellularisation, the scaffolds were characterised histologically, immunohistochemistry and the residual DNA content quantified. Surface topography was also viewed under scanning electron microscopy. Biocompatibility was evaluated using cytotoxicity assays utilising L-929 cell line. Decellularised scaffolds were recellularised with human dental pulp stem cells up to 14 days in vitro. Cellular viability was assessed using LIVE/DEAD stain kit and the recellularised scaffolds were further assessed histologically and immunolabelled using makers for odontoblastic differentiation, cytoskeleton components and growth factors. Analysis of the decellularised scaffolds revealed an acellular matrix with histological preservation of structural components. Decellularised scaffolds were biocompatible and able to support stem cell survival following recellularisation. Immunolabelling of the recellularised scaffolds demonstrated positive cellular expression against the tested markers in culture. This study has demonstrated the feasibility of developing a biocompatible decellularised dental pulp scaffold, which is able to support dental pulp stem cell repopulation. Clinically, decellularised pulp tissue could possibly be a suitable scaffold for use within regenerative (reparative) endodontic techniques.
    URI
    http://hdl.handle.net/10454/18375
    Version
    Published version
    Citation
    Matoug-Elwerfelli M, Nazzal H, Raif EM et al (2020) Ex-vivo recellularisation and stem cell differentiation of a decellularised rat dental pulp matrix. Scientific Reports. 10(1): 21553.
    Link to publisher’s version
    https://doi.org/10.1038/s41598-020-78477-x
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.