BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Assessment of lime-treated clays under different environmental conditions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (21.74Mb)
    Download
    Publication date
    2019
    Author
    Ali, Hatim F.A.
    Supervisor
    Mohamed, Mostafa H.A.
    Keyword
    Expansive clay
    Lime stabilisation
    Compaction delay
    Ambient temperature
    Swelling pressure
    Unconfined compressive strength
    Permeability coefficient
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2019
    
    Metadata
    Show full item record
    Abstract
    Natural soils in work-sites are sometimes detrimental to the construction of engineering projects. Problematic soils such as soft and expansive soils are a real source of concern to the long-term stability of structures if care is not taken. Expansive soils could generate immense distress due to their volume change in response to a slight change in their water content. On the other hand, soft soils are characterised by their low shear strength and poor workability. In earthwork, replacing these soils is sometimes economically and sustainably unjustifiable in particular if they can be stabilised to improve their behaviour. Several techniques have evolved to enable construction on problematic soils such as reinforcement using fibre and planar layers and piled reinforced embankments. Chemical treatment using, e.g. lime and/or cement is an alternative method to seize the volume change of swelling clays. The use of lime as a binding agent is becoming a popular method due to its abundant availability and cost-effectiveness. When mixed with swelling clays, lime enhances the mechanical properties, workability and reduces sensitivity to absorption and release of water. There is a consensus in the literature about the primary mechanisms, namely cation exchange, flocculation and pozzolanic reaction, which cause the changes in the soil characteristics after adding lime in the presence of water. The dispute is about whether these mechanisms occur in a sequential or synchronous manner. More precisely, the controversy concerns the formation of cementitious compounds in the pozzolanic reaction, whether it starts directly or after the cation exchange and flocculation are completed. The current study aims to monitor the signs of the formation of such compounds using a geotechnical approach. In this context, the effect of delayed compaction, lime content, mineralogy composition, curing time and environmental temperature on the properties of lime-treated clays were investigated. The compaction, swelling and permeability, and unconfind compression strength tests were chosen to evaluate such effect. In general, the results of the geotechnical approach have been characterised by their scattering. The sources of this dispersion are numerous and include sampling methods, pulverisation degree, mixing times and delay of compaction process, a pre-test temperature and humidity, differences in dry unit weight values, and testing methods. Therefore, in the current study, several precautions have been set to reduce the scattering in the results of such tests so that they can be used efficiently to monitor the evolution in the properties that are directly related to the formation and development of cementitious compounds. Four clays with different mineralogy compositions, covering a wide range of liquid limits, were chosen. The mechanical and hydraulic behaviour of such clays that had been treated by various concentrations of lime up to 25% at two ambient temperatures of 20 and 40oC were monitored for various curing times. The results indicated that the timing of the onset of changes in mechanical and hydraulic properties that are related to the formation of cementitious compounds depends on the mineralogy composition of treated clay and ambient temperature. Moreover, at a given temperature, the continuity of such changes in the characteristics of a given lime-treated clay depends on the lime availability.
    URI
    http://hdl.handle.net/10454/18313
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.