BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The application of Buckingham π theorem to Lattice-Boltzmann modelling of sewage sludge digestion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    dapelo_et_al_2020 (2.779Mb)
    Download
    Publication date
    2020-09-15
    Author
    Dapelo, Davide
    Trunk, R.
    Krause, M.J.
    Cassidy, N.
    Bridgeman, John
    Keyword
    Anaerobic digestion
    Euler-Lagrange
    Grid independence
    Lattice-Boltzmann
    Non-Newtonian
    OpenLB
    Rights
    (c) 2020 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    For the first time, a set of Lattice-Boltzmann two-way coupling pointwise Euler-Lagrange models is applied to gas mixing of sludge for anaerobic digestion. The set comprises a local model, a “first-neighbour” (viz., back-coupling occurs to the voxel where a particle sits, plus its first neighbours) and a “smoothing-kernel” (forward- and back-coupling occur through a smoothed-kernel averaging procedure). Laboratory-scale tests display grid-independence problems due to bubble diameter being larger than voxel size, thereby breaking the pointwise Euler-Lagrange assumption of negligible particle size. To tackle this problem and thereby have grid-independent results, a novel data-scaling approach to pointwise Euler-Lagrange grid independence evaluation, based on an application of the Buckingham π theorem, is proposed. Evaluation of laboratory-scale flow patterns and comparison to experimental data show only marginal differences in between the models, and between numerical modelling and experimental data. Pilot-scale simulations show that all the models produce grid-independent, coherent data if the Euler-Lagrange assumption of negligible (or at least, small) particle size is recovered. In both cases, a second-order convergence was achieved. A discussion follows on the opportunity of applying the proposed data-scaling approach rather than the smoothing-kernel model.
    URI
    http://hdl.handle.net/10454/18192
    Version
    Published version
    Citation
    Dapelo D, Trunk R, Krause MJ et al (2020) The application of Buckingham π theorem to Lattice-Boltzmann modelling of sewage sludge digestion. Computers and Fluids. 209: 104632.
    Link to publisher’s version
    https://doi.org/10.1016/j.compfluid.2020.104632
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.