BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Management and Law
    • Management and Law Publications
    • View Item
    •   Bradford Scholars
    • Management and Law
    • Management and Law Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Self-building Artificial Intelligence and machine learning to empower big data analytics in smart cities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Sivarajah_Information_Systems_Frontiers.pdf (5.232Mb)
    Download
    Publication date
    2020
    Author
    Alahakoon, D.
    Nawaratne, R.
    Xu, Y.
    De Silva, D.
    Sivarajah, Uthayasankar
    Gupta, B.
    Keyword
    Big data analytics
    Self-building AI
    Machine learning
    Smart cities
    Self-organizing maps
    Rights
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    The emerging information revolution makes it necessary to manage vast amounts of unstructured data rapidly. As the world is increasingly populated by IoT devices and sensors that can sense their surroundings and communicate with each other, a digital environment has been created with vast volumes of volatile and diverse data. Traditional AI and machine learning techniques designed for deterministic situations are not suitable for such environments. With a large number of parameters required by each device in this digital environment, it is desirable that the AI is able to be adaptive and self-build (i.e. self-structure, self-configure, self-learn), rather than be structurally and parameter-wise pre-defined. This study explores the benefits of self-building AI and machine learning with unsupervised learning for empowering big data analytics for smart city environments. By using the growing self-organizing map, a new suite of self-building AI is proposed. The self-building AI overcomes the limitations of traditional AI and enables data processing in dynamic smart city environments. With cloud computing platforms, the selfbuilding AI can integrate the data analytics applications that currently work in silos. The new paradigm of the self-building AI and its value are demonstrated using the IoT, video surveillance, and action recognition applications.
    URI
    http://hdl.handle.net/10454/18003
    Version
    Published version
    Citation
    Alahakoon D, Nawaratne R, Xu Y et al (2020) Self-building Artificial Intelligence and machine learning to empower big data analytics in smart cities. Information Systems Frontiers. Accepted for Publication.
    Link to publisher’s version
    https://doi.org/10.1007/s10796-020-10056-x
    Type
    Article
    Collections
    Management and Law Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.