BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Euler-Lagrange Computational Fluid Dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Bridgeman_Advances_in_Engineering_Software.pdf (7.717Mb)
    Download
    Publication date
    2018-03
    Author
    Dapelo, Davide
    Bridgeman, John
    Keyword
    Wastewater
    Sludge
    CFD
    Euler-Lagrangian
    Non-Newtonian fluid
    Turbulence
    Energy
    Rights
    © 2017 Elsevier Ltd. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    For the first time, an Euler-Lagrange model for Computational Fluid Dynamics (CFD) is used to model a full-scale gas-mixed anaerobic digester. The design and operation parameters of a digester from a wastewater treatment works are modelled, and mixing is assessed through a novel, multi-facetted approach consisting of the simultaneous analysis of (i) velocity, shear rate and viscosity flow patterns, (ii) domain characterization following the average shear rate value, and (iii) concentration of a non-diffusive scalar tracer. The influence of sludge’s non-Newtonian behaviour on flow patterns and its consequential impact on mixing quality were discussed for the first time. Recommendations to enhance mixing effectiveness are given: (i) a lower gas mixing input power can be used in the digester modelled within this work without a significant change in mixing quality, and (ii) biogas injection should be periodically switched between different nozzle series placed at different distances from the centre.
    URI
    http://hdl.handle.net/10454/17925
    Version
    Accepted manuscript
    Citation
    Dapelo D and Bridgeman J (2018) Euler-Lagrange Computational Fluid Dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment. Advances in Engineering Software. 117: 153-169.
    Link to publisher’s version
    https://doi.org/10.1016/j.advengsoft.2017.08.009
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.