BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Swift_et_al_CST.pdf (1.394Mb)
    Download
    Publication date
    2019-11
    Author
    Melo, P.
    Ferreira, A-M.
    Waldron, K.
    Swift, Thomas
    Gentile, P.
    Magallanes, M.
    Marshall, M.
    Dalgarno, K.
    Keyword
    Glass fibres
    Polymer-matrix composites
    Short-fibre composites
    Particle reinforced composites
    3D printing
    Rights
    © 2019 Elsevier Ltd. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Composites have clinical application for their ability to mimic the hierarchical structure of human tissues. In tissue engineering applications the use of degradable biopolymer matrices reinforced by bioactive ceramics is seen as a viable process to increase osteoconductivity and accelerate tissue regeneration, and technologies such as additive manufacturing provide the design freedom needed to create patient-specific implants with complex shapes and controlled porous structures. In this study a medical grade poly(l-lactide) (PLLA) was used as matrix while apatite-wollastonite (AW) was used as reinforcement (5 wt% loading). Premade rods of composite were pelletized and processed to create a filament with an average diameter of 1.6 mm, using a twin-screw extruder. The resultant filament was 3D printed into three types of porous woodpile samples: PLLA, PLLA reinforced with AW particles, and PLLA with short AW fibres. None of the samples degraded in phosphate buffered solution over a period of 8 weeks, and an average effective modulus of 0.8 GPa, 1 GPa and 1.5 GPa was obtained for the polymer, particle and fibre composites, respectively. Composite samples immersed in simulated body fluid exhibited bioactivity, producing a surface apatite layer. Furthermore, cell viability and differentiation were demonstrated for human mesenchymal stromal cells for all sample types, with mineralisation detected solely for biocomposites. It is concluded that both composites have potential for use in critical size bone defects, with the AW fibre composite showing greater levels of ion release, stimulating more rapid cell proliferation and greater levels of mineralisation.
    URI
    http://hdl.handle.net/10454/17910
    Version
    Accepted Manuscript
    Citation
    Melo P, Ferreira A-M, Waldron K et al (2019) Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Composites Science and Technology. 184: 107834.
    Link to publisher’s version
    https://doi.org/10.1016/j.compscitech.2019.107834
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.