Structural complexity of the co-chaperone SGTA: a conserved C-terminal region is implicated in dimerization and substrate quality control
View/ Open
martinez_lumbreras_et_al_2018.pdf (4.046Mb)
Download
Publication date
2018-07-11Author
Martínez-Lumbreras, S.Krysztofinska, E.M.
Thapaliya, A.
Spilotros, A.
Matak-Vinkovic, D.
Salvadori, E.
Roboti, P.
Nyathi, Yvonne
Muench, J.H.
Roessler, M.M.
Svergun, D.I.
High, S.
Isaacson, R.L.
Keyword
Hydrophobic substratesEndoplasmic reticulum-associated degradation
Protein quality control mechanisms
BCL2-associated athanogene (BAG6)
Double electron-electron resonance (DEER)
Rights
(c) 2018 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)Peer-Reviewed
YesOpen Access status
openAccess
Metadata
Show full item recordAbstract
Protein quality control mechanisms are essential for cell health and involve delivery of proteins to specific cellular compartments for recycling or degradation. In particular, stray hydrophobic proteins are captured in the aqueous cytosol by a co-chaperone, the small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA), which facilitates the correct targeting of tail-anchored membrane proteins, as well as the sorting of membrane and secretory proteins that mislocalize to the cytosol and endoplasmic reticulum-associated degradation. Full-length SGTA has an unusual elongated dimeric structure that has, until now, evaded detailed structural analysis. The Cterminal region of SGTA plays a key role in binding a broad range of hydrophobic substrates, yet in contrast to the well-characterized N-terminal and TPR domains, there is a lack of structural information on the C-terminal domain. In this study, we present new insights into the conformation and organization of distinct domains of SGTA and show that the C-terminal domain possesses a conserved region essential for substrate processing in vivo. We show that the C-terminal domain region is characterized by α-helical propensity and an intrinsic ability to dimerize independently of the N-terminal domain. Based on the properties of different regions of SGTA that are revealed using cell biology, NMR, SAXS, Native MS, and EPR, we observe that its C-terminal domain can dimerize in the full-length protein and propose that this reflects a closed conformation of the substrate-binding domain. Our results provide novel insights into the structural complexity of SGTA and provide a new basis for mechanistic studies of substrate binding and release at the C-terminal region.Version
Published versionCitation
Martínez-Lumbreras S, Krysztofinska EM, Thapaliya A et al (2018) Structural complexity of the co-chaperone SGTA: a conserved C-terminal region is implicated in dimerization and substrate quality control. BMC Biology. 16(1): 76.Link to Version of Record
https://doi.org/10.1186/s12915-018-0542-3Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1186/s12915-018-0542-3