BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Equivalence classes of coherent projectors in a Hilbert space with prime dimension: Q functions and their Gini index

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Vourdas_Journal_of_Physics (341.0Kb)
    Download
    Publication date
    2020-05
    Author
    Vourdas, Apostolos
    Keyword
    Coherent projectors
    Gini index
    Phase space methods
    Rights
    This is an author-created, un-copyedited version of an article published in Journal of Physics A: Mathematical and Theoretical. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1751-8121/ab86e0.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Coherent subspaces spanned by a finite number of coherent states are introduced, in a quantum system with Hilbert space that has odd prime dimension d. The set of all coherent subspaces is partitioned into equivalence classes, with d 2 subspaces in each class. The corresponding coherent projectors within an equivalence class, have the 'closure under displacements property' and also resolve the identity. Different equivalence classes provide different granularisation of the Hilbert space, and they form a partial order 'coarser' (and 'finer'). In the case of a two-dimensional coherent subspace spanned by two coherent states, the corresponding projector (of rank 2) is different than the sum of the two projectors to the subspaces related to each of the two coherent states. We quantify this with 'non-addditivity operators' which are a measure of quantum interference in phase space, and also of the non-commutativity of the projectors. Generalized Q and P functions of density matrices, which are based on coherent projectors in a given equivalence class, are introduced. Analogues of the Lorenz values and the Gini index (which are popular quantities in mathematical economics) are used here to quantify the inequality in the distribution of the Q function of a quantum state, within the granular structure of the Hilbert space. A comparison is made between Lorenz values and the Gini index for the cases of coarse and also fine granularisation of the Hilbert space. Lorenz values require an ordering of the d 2 values of the Q function of a density matrix, and this leads to the ranking permutation of a density matrix, and to comonotonic density matrices (which have the same ranking permutation). The Lorenz values are a superadditive function and the Gini index is a subadditive function (they are both additive quantities for comonotonic density matrices). Various examples demonstrate these ideas.
    URI
    http://hdl.handle.net/10454/17828
    Version
    Accepted manuscript
    Citation
    Vourdas A (2020) Equivalence classes of coherent projectors in a Hilbert space with prime dimension: Q functions and their Gini index. Journal of Physics A: Mathematical and Theoretical. 53(21): 215201.
    Link to publisher’s version
    https://doi.org/10.1088/1751-8121/ab86e0
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.