BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    jones_et_al_2016.pdf (1.207Mb)
    Download
    Publication date
    2016-04
    Author
    Jones, Huw S.
    Gordon, A.
    Magwensi, S.G.
    Naseem, K.
    Atkin, S.L.
    Courts, F.L.
    Keyword
    Endothelial cells
    NADPH oxidase
    Nitric oxide
    Quercetin
    Superoxide
    Rights
    © 2016 Wiley. This is the peer-reviewed version of the following article: Jones HS, Gordon A, Magwenzi SG et al (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Molecular Nutrition and Food Research. 60(4): 787-797, which has been published in final form at https://doi.org/10.1002/mnfr.201500751. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Quercetin is reported to reduce blood pressure in hypertensive but not normotensive humans, but the role of endothelial redox signaling in this phenomenon has not been assessed. This study investigated the effects of physiologically obtainable quercetin concentrations in a human primary cell model of endothelial dysfunction in order to elucidate the mechanism of action of its antihypertensive effects. Angiotensin II (100 nM, 8 h) induced dysfunction, characterized by suppressed nitric oxide availability (85 ± 4% p<0.05) and increased superoxide production (136 ± 5 %, p<0.001). These effects were ablated by an NADPH oxidase inhibitor. Quercetin (3 μM, 8 h) prevented angiotensin II induced changes in nitric oxide and superoxide levels, but no effect upon nitric oxide or superoxide in control cells. The NADPH oxidase subunit p47(phox) was increased at the mRNA and protein levels in angiotensin II-treated cells (130 ± 14% of control, p<0.05), which was ablated by quercetin co-treatment. Protein kinase C activity was increased after angiotensin II treatment (136 ± 51%), however this was unaffected by quercetin co-treatment. Physiologically obtainable quercetin concentrations are capable of ameliorating angiotensin II-induced endothelial nitric oxide and superoxide imbalance via protein kinase C-independent restoration of p47(phox) gene and protein expression.
    URI
    http://hdl.handle.net/10454/17790
    Version
    Accepted manuscript
    Citation
    Jones HS, Gordon A, Magwenzi SG et al (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Molecular Nutrition and Food Research. 60(4): 787-797.
    Link to publisher’s version
    https://doi.org/10.1002/mnfr.201500751
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.