BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Study of molecular interactions and chemical reactivity of the nitrofurantoin-3-aminobenzoic acid cocrystal using quantum chemical and spectroscopic (IR, Raman,<sup>13</sup>C SS-NMR) approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2017-07-28
    Author
    Shukla, A.
    Khan, E.
    Srivastava, K.
    Sinha, K.
    Tandon, P.
    Vangala, Venu R.
    Keyword
    Nitrofurantoin-3-aminobenzoic acid
    Structural reactivity
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Investigations of structural reactivity, molecular interactions and vibrational characterization of pharmaceutical drugs are helpful in understanding their behaviour. The aim of this study is to determine the molecular, electronic and chemical properties of the antibiotic drug nitrofurantoin (NF), after cocrystallisation with 3-aminobenzoic acid (3ABA) and to understand how those changes lead to variation of properties in the cocrystal NF–3ABA. NF–3ABA formation is explained by stabilization via the hydrogen-bond network between NF and 3ABA molecules. It is thoroughly characterized by IR, Raman and CP-MAS solid-state 13C NMR techniques, along with quantum chemical calculations. The results of IR, Raman, and 13C NMR analyses showed that imide N–H23 and C12[double bond, length as m-dash]O of NF interact with the acid C[double bond, length as m-dash]O and –OH groups in 3-ABA, respectively. Therefore the IR, Raman, and 13C NMR spectra verified the formation of N–H⋯O and O–H⋯O hydrogen bonds. To study hydrogen bonding interactions theoretically in NF–3ABA, two functionals B3LYP and wB97X-D have been used. A comparison is made between the results obtained by B3LYP and those predicted at the wB97X-D level. It is found that wB97X-D is best applied density functional theory (DFT) functional to describe the hydrogen bonding interactions. The strength and nature of hydrogen bonding in NF–3ABA have been analysed by quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. To validate the results obtained by QTAIM theory and to study the long-range forces, such as van der Waals interactions, the steric effects in NF–3ABA, the reduced density gradient (RDG) and the isosurface have been plotted using Multiwfn software. QTAIM and isosurface analysis suggested that the hydrogen bonding interactions present in NF–3ABA are moderate in nature. The calculated HOMO–LUMO energy gap shows that NF–3ABA is more active than NF and 3ABA. Chemical reactivity descriptors are calculated to understand the various aspects of pharmacological sciences. Chemical reactivity parameters show that NF–3ABA is softer and chemically more reactive than NF. The results suggest that cocrystals can be a feasible alternative for positively changing the targeted physicochemical properties of an active pharmaceutical ingredient (API).
    URI
    http://hdl.handle.net/10454/17779
    Version
    No full-text in the repository
    Citation
    Shukla A, Khan E, Srivastava K et al (2017) Study of molecular interactions and chemical reactivity of the nitrofurantoin-3-aminobenzoic acid cocrystal using quantum chemical and spectroscopic (IR, Raman,13C SS-NMR) approaches. CrystEngComm. 19(28): 3921-3930.
    Link to publisher’s version
    https://doi.org/10.1039/C7CE00864C
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.