Graded possibilistic clustering of non-stationary data streams
dc.contributor.author | Abdullatif, Amr R.A. | |
dc.contributor.author | Masulli, F. | |
dc.contributor.author | Rovetta, S. | |
dc.contributor.author | Cabri, A. | |
dc.date.accessioned | 2020-01-27T11:40:13Z | |
dc.date.accessioned | 2020-02-12T15:51:12Z | |
dc.date.available | 2020-01-27T11:40:13Z | |
dc.date.available | 2020-02-12T15:51:12Z | |
dc.date.issued | 2017-02 | |
dc.identifier.citation | Abdullatif A, Masulli F, Rovetta S et al (2017) Graded possibilisitic clustering of non-stationary data streams. In: Petrosino A, Loia V and Pedrycz E (Eds.) Fuzzy logic and soft computing applications. WILF 2016. Lecture notes in computer science: 10147. Springer. | en_US |
dc.identifier.uri | http://hdl.handle.net/10454/17629 | |
dc.description | Yes | en_US |
dc.description.abstract | Multidimensional data streams are a major paradigm in data science. This work focuses on possibilistic clustering algorithms as means to perform clustering of multidimensional streaming data. The proposed approach exploits fuzzy outlier analysis to provide good learning and tracking abilities in both concept shift and concept drift. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer, Cham | |
dc.relation.isreferencedby | https://doi.org/10.1007/978-3-319-52962-2_12 | en_US |
dc.rights | ©Springer International Publishing AG 2017. Reproduced in accordance with the publisher's self-archiving policy. The final authenticated version is available online at https://doi.org/10.1007/978-3-319-52962-2_12. | en_US |
dc.subject | Cluster model | en_US |
dc.subject | Concept drift | en_US |
dc.subject | Ambient assisted living | en_US |
dc.subject | Annealing schedule | en_US |
dc.subject | Concept shift | en_US |
dc.title | Graded possibilistic clustering of non-stationary data streams | en_US |
dc.status.refereed | Yes | en_US |
dc.date.application | 2017-02-07 | |
dc.type | Book chapter | en_US |
dc.type.version | Accepted manuscript | en_US |
dc.date.updated | 2020-01-27T11:40:19Z | |
refterms.dateFOA | 2020-02-12T15:51:36Z |