BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Clustering of nonstationary data streams: a survey of fuzzy partitional methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Abdullatif_WIRES.pdf (671.0Kb)
    Download
    Publication date
    2018-07
    Author
    Abdullatif, Amr R.A.
    Masulli, F.
    Rovetta, S.
    Keyword
    Data streams
    Fuzzy clustering
    Nonstationary data
    Survey
    Rights
    © 2018 Wiley This is the peer reviewed version of the following article: Abdullatif A, Masulli F and Rovetta S (2018) Clustering of nonstationary data streams: a survey of fuzzy partitional methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8(4): e1258, which has been published in final form at https://doi.org/10.1002/widm.1258. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Data streams have arisen as a relevant research topic during the past decade. They are real‐time, incremental in nature, temporally ordered, massive, contain outliers, and the objects in a data stream may evolve over time (concept drift). Clustering is often one of the earliest and most important steps in the streaming data analysis workflow. A comprehensive literature is available about stream data clustering; however, less attention is devoted to the fuzzy clustering approach, even though the nonstationary nature of many data streams makes it especially appealing. This survey discusses relevant data stream clustering algorithms focusing mainly on fuzzy methods, including their treatment of outliers and concept drift and shift.
    URI
    http://hdl.handle.net/10454/17599
    Version
    Accepted manuscript
    Citation
    Abdullatif A, Masulli F and Rovetta S (2018) Clustering of nonstationary data streams: a survey of fuzzy partitional methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8(4): e1258.
    Link to publisher’s version
    https://doi.org/10.1002/widm.1258
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.