BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tracking time evolving data streams for short-term traffic forecasting

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Abdullatif_Data_Science_&_Engineering (2.074Mb)
    Download
    Publication date
    2017-09
    Author
    Abdullatif, Amr R.A.
    Masulli, F.
    Rovetta, S.
    Keyword
    Traffic forecasting
    Fuzzy clustering
    Big data
    Ensemble model
    Evolving data streams
    Rights
    ©The Author(s) 2017. This article is an open access publication. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Data streams have arisen as a relevant topic during the last few years as an efficient method for extracting knowledge from big data. In the robust layered ensemble model (RLEM) proposed in this paper for short-term traffic flow forecasting, incoming traffic flow data of all connected road links are organized in chunks corresponding to an optimal time lag. The RLEM model is composed of two layers. In the first layer, we cluster the chunks by using the Graded Possibilistic c-Means method. The second layer is made up by an ensemble of forecasters, each of them trained for short-term traffic flow forecasting on the chunks belonging to a specific cluster. In the operational phase, as a new chunk of traffic flow data presented as input to the RLEM, its memberships to all clusters are evaluated, and if it is not recognized as an outlier, the outputs of all forecasters are combined in an ensemble, obtaining in this a way a forecasting of traffic flow for a short-term time horizon. The proposed RLEM model is evaluated on a synthetic data set, on a traffic flow data simulator and on two real-world traffic flow data sets. The model gives an accurate forecasting of the traffic flow rates with outlier detection and shows a good adaptation to non-stationary traffic regimes. Given its characteristics of outlier detection, accuracy, and robustness, RLEM can be fruitfully integrated in traffic flow management systems.
    URI
    http://hdl.handle.net/10454/17598
    Version
    Published version
    Citation
    Abdullatif A, Masulli F and Rovetta S (2017) Tracking time evolving data stream for short-term traffic forecasting. Data Science and Engineering. 2: 210-223.
    Link to publisher’s version
    https://doi.org/10.1007/s41019-017-0048-y
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.