Show simple item record

dc.contributor.advisorBenkreira, Hadj
dc.contributor.advisorPatel, Rajnikant
dc.contributor.authorAbdelrahim, A.M.A.
dc.date.accessioned2019-11-21T07:20:43Z
dc.date.available2019-11-21T07:20:43Z
dc.identifier.urihttp://hdl.handle.net/10454/17481
dc.description.abstractA major problem faced by the petroleum industry is the deposition of wax during the pumping of waxy crude oils. This precipitation occurs at “normal” temperature, typically 20-30°C in Libya. It could occur during the journey from well to terminal through hundreds of miles of pipelines. This kind of transportation is expensive in terms of pumping costs. The pumping has to be continuous; otherwise wax can build up in the pipeline, reducing the pumping or even stopping it. The property that defines this characteristic is the yield stress which depends on wax concentration and cooling rate. The build-up of paraffin and asphaltenes can lead to serious problems in formation, tanks, and pipelines. Blockages can be expensive and time-consuming to deal with; this is precisely the topic of this research. For this research, model and real waxy crude oils are formulated and their rheology systematically measured under various cooling rates to determine the yield stress. A pipeline loop has been designed to measure the start-up pressure of stagnant oil which has been allowed to precipitate wax. The start-up pressure and the thickness of deposited wax are used in a simple mathematical model to calculate the yield stress. This research thus provides two independent means of predicting the yield stress. This research studied three different waxy crude oils. An MCR-301 Anton Paar rheometer was used to measure the rheology of the oils, and a pipeline rig was used to obtain the start-up pressure to calculate the yield stress of each type of oil after different stoppage times. Also, the thickness of the precipitated wax is measured to calculate the yield stress precisely. The data show that the layer thickness has significant effect on the yield stress and start-up pressures and corresponding yield flow stresses have been found to underpin the crystallisation process of the wax and slow cooling rate produce stronger structures requiring higher stresses to fracture and induce flow. Also, longer shutdown times make these structures even stronger and therefore require even larger stresses for flow to commence.en_US
dc.language.isoenen_US
dc.publisherUniversity of Bradforden_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectRheologyen_US
dc.subjectPumpingen_US
dc.subjectWaxy crude oilsen_US
dc.titleRheology and Pumping of Waxy Crude Oils: An experimental study of the yield stresses of waxy crude oils measured using a range of rheological techniquesen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentFaculty of Engineering and Informaticsen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2011
refterms.dateFOA2019-11-21T07:20:43Z


Item file(s)

Thumbnail
Name:
559000.pdf
Size:
10.37Mb
Format:
PDF
Description:
Abdelrahim, A.M.A.

This item appears in the following Collection(s)

Show simple item record