BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Correlating nano-scale surface replication accuracy and cavity temperature in micro-injection moulding using in-line process control and high-speed thermal imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    baruffi et al 2019.pdf (1.940Mb)
    Download
    Publication date
    2019-11
    Author
    Baruffi, F.
    Gülçür, Mert
    Calaon, M.
    Romano, J.-M.
    Penchev, P.
    Dimov, S.
    Whiteside, Benjamin R.
    Tosello, G.
    Keyword
    Micro-injection moulding
    Flow visualisation
    Surface replication
    In-line quality assurance
    Rights
    © 2019 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Micro-injection moulding (μIM) stands out as preferable technology to enable the mass production of polymeric components with micro- and nano-structured surfaces. One of the major challenges of these processes is related to the quality assurance of the manufactured surfaces: the time needed to perform accurate 3D surface acquisitions is typically much longer than a single moulding cycle, thus making impossible to integrate in-line measurements in the process chain. In this work, the authors proposed a novel solution to this problem by defining a process monitoring strategy aiming at linking sensitive in-line monitored process variables with the replication quality. A nano-structured surface for antibacterial applications was manufactured on a metal insert by laser structuring and replicated using two different polymers, polyoxymethylene (POM) and polycarbonate (PC). The replication accuracy was determined using a laser scanning confocal microscope and its dependence on the variation of the main μIM parameters was studied using a Design of Experiments (DoE) experimental approach. During each process cycle, the temperature distribution of the polymer inside the cavity was measured using a high-speed infrared camera by means of a sapphire window mounted in the movable plate of the mould. The temperature measurements showed a high level of correlation with the replication performance of the μIM process, thus providing a fast and effective way to control the quality of the moulded surfaces in-line.
    URI
    http://hdl.handle.net/10454/17436
    Version
    Accepted manuscript
    Citation
    Baruffi F, Gülçür M, Calaon M et al (2019) Correlating nano-scale surface replication accuracy and cavity temperature in micro-injection moulding using in-line process control and high-speed thermal imaging. Journal of Manufacturing Processes. 47: 367-381.
    Link to publisher’s version
    https://doi.org/10.1016/j.jmapro.2019.08.017
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.