BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multi-Physics Co-Simulation of Engine Combustion and Exhaust Aftertreatment system: Development of a Multi-Physics Co-Simulation Framework of Engine Combustion and Exhaust Aftertreatment for Model-Based System Optimisation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    themi, v.pdf (6.452Mb)
    Download
    Author
    Themi, Vasos
    Supervisor
    Campean, I. Felician
    Wood, Alastair S.
    Keyword
    Model-based
    Multi-physics
    Co-simulation
    Engine powertrain
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    The incorporation of detailed chemistry models in internal combustion engine simulations is becoming mandatory as new combustion strategies and lower global emissions limits are setting the path towards a more efficient engine cycle simulation tool. In this report, the computational capability of the stochastic-based Kinetics SRM engine suite by CMCL Innovations is evaluated in depth. With the main objectives of this research to create a multi-physics co-simulation framework and improve the traditional engine modelling approach of individual simulation of engine system parts, the Kinetics SRM code was coupled with a GT-SUITE engine model to fill in the gap of accurate emissions predictions from one-dimensional simulation tools. The system was validated against testing points collected from the AJ133 V8 5L GDI engine running on the NEDC. The Kinetics SRM model is further advanced through a sensitivity analysis for the “unknown” internal parameters of the chemistry tool. A set of new parameters’ values has been established that gives the best overall trade-off between prediction accuracy and computational time. However, it still showed high percentage errors in modelling the emissions and it was discovered that the specific software package currently cannot simulate directed injection events. This is the first time a Kinetics SRM/GT-SUITE coupled code is employed to model a full 8-cylinder GDI SI engine. The approach showed some limitations regarding the Kinetics SRM and that in many cases is limited to trend analysis. The coupled engine – combustion emissions model is then linked with an exhaust aftertreatment system model in MATLAB Simulink, creating a multi-physics model-based co-simulation framework of engine performance, combustion characterisation, in-cylinder emissions formation and aftertreatment efficiency.
    URI
    http://hdl.handle.net/10454/17403
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.