BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular mechanisms of myricetin bulk and nano forms mediating genoprotective and genotoxic effects in lymphocytes from pre-cancerous and myeloma patients

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    akhtar, s.pdf (2.099Mb)
    Download
    Author
    Akhtar, Shabana
    Supervisor
    Anderson, Diana
    Gopalan, Rajendran C.
    Najafzadeh, Mojgan
    Keyword
    Myricetin
    Bulk and nano forms
    Genotoxic
    Genoprotective
    Human lymphocytes
    Pre-cancerous blood disorders
    Myeloma patients
    Health individuals
    PhIP
    H2O2
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Life Sciences
    Awarded
    2018
    
    Metadata
    Show full item record
    Abstract
    Cancer is one of the leading causes of death across the globe which needs appropriate and cost-effective treatment. Several recent studies have suggested that dietary intake of various flavonoids such as myricetin have a protective effect against different types of cancers and cardiovascular diseases. The present study was conducted to investigate the genoprotective and genotoxic effects of myricetin nano and bulk forms on the lymphocytes from pre-cancerous and multiple myeloma cancer patients compared to those from healthy individuals. Also, to investigate the protective potential of myricetin bulk and nano against the oxidative stress produced in vitro by 2- amino-1-methyl-6 phenylimidazo [4, 5-b] pyridine and reactive oxygen species- induced DNA damage using the Comet assay, micronucleus assay, cellular reactive oxygen species and glutathione detection assay, Western blotting, real-time polymerase chain reaction and immunofluorescence. Lymphocytes from the patient groups showed significantly higher levels of basal DNA damage compared to the lymphocytes from healthy individuals which was observed throughout the in vitro treatment. Myricetin in both forms has not induced any significant DNA damage in all of the investigative groups at selective lower concentrations; in fact, the results demonstrate a reduction in DNA damage upon treating with myricetin nano in lymphocytes from pre-cancerous patients demonstrated by significant reduction in micronuclei formation in mononucleated cells. DNA repair capacity of myricetin bulk and nano was determined by co-treating the drugs with hydrogen peroxide. Myricetin significantly reduced the oxidative stress related damage caused by hydrogen peroxide, where myricetin nano seemed to be more effective employing the Comet assay. In the presence of myricetin bulk and nano, the damaging effects of 2- amino-1-methyl-6 phenylimidazo [4,5-b] pyridine were considerably decreased, where myricetin nano was more effective. This could be because nanoparticles have a larger surface area which could improve their reactivity and also the reduction in size of the particles could improve the anti-cancer properties of this compound. Myricetin has shown genoprotective and anti-oxidant effects by demonstrating the potential to reduce DNA damage caused by over-production of reactive oxygen species and oxidative stress. It has also shown anti-cancer potential in the lymphocytes from multiple myeloma patients by regulating the apoptosis related proteins, dependent on oxidative stress. Therefore, this study suggests that myricetin supplementation in our regular diet with enhanced bioavailability could have potential health beneficial effects and possibly protect against various diseases including cancer.
    URI
    http://hdl.handle.net/10454/17367
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.