BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Guo_Journal_of_Hydrology.pdf (1.039Mb)
    Download
    Publication date
    2019-11
    Author
    Huai, W.
    Yang, L.
    Wang, W-J.
    Guo, Yakun
    Wang, T.
    Cheng, Y.
    Keyword
    Random displacement model
    Suspended sediment concentration
    Diffusivity
    Dispersivity
    Vegetated sandy flows
    Rights
    © 2019 Elsevier B.V. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Based on the Lagrangian approach, this study proposes a random displacement model (RDM) to predict the concentration of suspended sediment in vegetated steady open channel flow. Validation of the method was conducted by comparing the simulated results by using the RDM with available experimental measurements for uniform open-channel flows. The method is further validated with the classical Rouse formula. To simulate the important vertical dispersion caused by vegetation in the sediment-laden open channel flow, a new integrated sediment diffusion coefficient is introduced in this study, which is equal to a coefficient multiplying the turbulent diffusion coefficient. As such, the RDM approach for sandy flow with vegetation was established for predicting the suspended sediment concentration in low-sediment-concentration flow with both the emergent and submerged vegetation. The study shows that the value of for submerged vegetation flow is larger than that for emergent vegetation flow. The simulated result using the RDM is in good agreement with the available experimental data, indicating that the proposed sediment diffusion coefficient model can be accurately used to investigate the sediment concentration in vegetated steady open channel flow.
    URI
    http://hdl.handle.net/10454/17285
    Version
    Accepted manuscript
    Citation
    Huai W, Yang L, Wang W-J et al (2019) Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model. Journal of Hydrology. 578: 124101.
    Link to publisher’s version
    https://doi.org/10.1016/j.jhydrol.2019.124101
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.