BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Automatic modulation classification using interacting multiple model - Kalman filter for channel estimation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Hu_et_al_IEEE_Paper (1.447Mb)
    Download
    Publication date
    2019-09
    Author
    Abdul Salam, Ahmed O.
    Sheriff, Ray E.
    Hu, Yim Fun
    Al-Araji, S.R.
    Mezher, K.
    Keyword
    Automatic modulation classification
    Kalman filter
    Interacting multiple model
    Channel estimation
    Rights
    © 2019 IEEE. Reproduced in accordance with the publisher's self-archiving policy. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    A rigorous model for automatic modulation classification (AMC) in cognitive radio (CR) systems is proposed in this paper. This is achieved by exploiting the Kalman filter (KF) integrated with an adaptive interacting multiple model (IMM) for resilient estimation of the channel state information (CSI). A novel approach is proposed, in adding up the squareroot singular values (SRSV) of the decomposed channel using the singular value decompositions (SVD) algorithm. This new scheme, termed Frobenius eigenmode transmission (FET), is chiefly intended to maintain the total power of all individual effective eigenmodes, as opposed to keeping only the dominant one. The analysis is applied over multiple-input multiple-output (MIMO) antennas in combination with a Rayleigh fading channel using a quasi likelihood ratio test (QLRT) algorithm for AMC. The expectation-maximization (EM) is employed for recursive computation of the underlying estimation and classification algorithms. Novel simulations demonstrate the advantages of the combined IMM-KF structure when compared to the perfectly known channel and maximum likelihood estimate (MLE), in terms of achieving the targeted optimal performance with the desirable benefit of less computational complexity loads.
    URI
    http://hdl.handle.net/10454/17197
    Version
    Accepted manuscript
    Citation
    Abdul Salam AO, Sheriff RE, Hu YF et al (2019) Automatic modulation classification using interacting multiple model - Kalman filter for channel estimation. IEEE Transactions on Vehicular Technology. 68(9): 8928-8939.
    Link to publisher’s version
    https://doi.org/10.1109/TVT.2019.2930469
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.