Show simple item record

dc.contributor.authorLeka, K.D.
dc.contributor.authorPark, S-H.
dc.contributor.authorKusano, K.
dc.contributor.authorAndries, J.
dc.contributor.authorBarnes, G.
dc.contributor.authorBingham, S.
dc.contributor.authorBloomfield, D.S.
dc.contributor.authorMcCloskey, A.E.
dc.contributor.authorDelouille, V.
dc.contributor.authorFalconer, D.
dc.contributor.authorGallagher, P.T.
dc.contributor.authorGeorgoulis, M.K.
dc.contributor.authorKubo, Y.
dc.contributor.authorLee, K.
dc.contributor.authorLee, S.
dc.contributor.authorLobzin, V.
dc.contributor.authorMun, J.
dc.contributor.authorMurray, S.A.
dc.contributor.authorNageem, T.A.M.H.
dc.contributor.authorQahwaji, Rami S.R.
dc.contributor.authorSharpe, M.
dc.contributor.authorSteenburgh, R.
dc.contributor.authorSteward, G.
dc.contributor.authorTerkilsden, M.
dc.date.accessioned2019-07-26T00:08:57Z
dc.date.accessioned2019-08-07T14:06:25Z
dc.date.available2019-07-26T00:08:57Z
dc.date.available2019-08-07T14:06:25Z
dc.date.issued2019-08
dc.identifier.citationLeka KD, Park S-H, Kusano K et al (2019) A comparison of flare forecasting methods. II. Benchmarks, metrics and performance results for operational solar flare forecasting systems. Astrophysical Journal Supplement Series. 243(2): 36.
dc.identifier.urihttp://hdl.handle.net/10454/17193
dc.descriptionYes
dc.description.abstractSolar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand solar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al. 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to – for the first time – directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the “no skill” level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and today’s performance benchmarks against which improvements and new methods may be compared.
dc.language.isoenen
dc.rights© 2019 American Astronomical Association. Reproduced in accordance with the publisher's self-archiving policy.
dc.subjectMethods
dc.subjectStatistical - sun
dc.subjectFlares - sun
dc.subjectMagnetic fields
dc.titleA comparison of flare forecasting methods. II. Benchmarks, metrics and performance results for operational solar flare forecasting systems
dc.status.refereedYes
dc.date.application2019-08-16
dc.typeArticle
dc.type.versionAccepted manuscript
dc.identifier.doihttps://doi.org/10.3847/1538-4365/ab2e12
dc.rights.licenseUnspecified
dc.date.updated2019-07-25T23:08:58Z
refterms.dateFOA2019-08-07T14:07:53Z
dc.openaccess.statusopenAccess
dc.date.accepted2019


Item file(s)

Thumbnail
Name:
1907.02905.pdf
Size:
931.9Kb
Format:
PDF
Description:
Qahwaji_Main_article

This item appears in the following Collection(s)

Show simple item record