BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    3D Mapping of Islamic Geometric Motifs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (13.27Mb)
    Download
    Publication date
    2017
    Author
    Sayed, Zahra
    Supervisor
    Ugail, Hassan
    Palmer, Ian J.
    Keyword
    Islamic geometry
    Shape grammar
    3D Mapping
    Motifs
    Parameterized
    Shell mapping
    Point set registration
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering & Informatics
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    In this thesis a novel approach in generating 3D IGP is applied using shape grammar, an effective pattern generation method. The particular emphasis here is to generate the motifs (repeat unit) in 3D using parameterization, which can then be manipulated within 3D space to construct architectural structures. Three unique distinctive shape grammar algorithms were developed in 3D; Parameterized Shape Grammar (PSG), Auto-Parameterized Shape Grammar (APSG) and Volumetric Shell Shape Grammar (VSSG). Firstly, the PSG generates the motifs in 3D. It allows one to use a single changeable regular 3D polygon, and forms a motif by given grammar rules including, Euclidean transformations and Boolean operations. Next, APSG was used to construct the architectural structures that manipulates the motif by automating the grammar rules. The APSG forms a wall, a column, a self-similarity star and a dome, the main features of Islamic architecture. However, applying Euclidean transformations to create non-Euclidean surfaces resulted in gaps and or overlaps which does not form a perfect tessellation. This is improved upon by the VSSM, which integrates two key methods, shell mapping and coherent point drift, to map an aesthetically accurate 3D IGM on a given surface. This work has successfully presented methods for creating complex intricate 3D Islamic Geometric Motifs (IGM), and provided an efficient mapping technique to form visually appealing decorated structures.
    URI
    http://hdl.handle.net/10454/17145
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.