BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fully automated computer system for diagnosis of corneal diseases. Development of image processing technologies for the diagnosis of Acanthamoeba and Fusarium diseases in confocal microscopy images

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (8.946Mb)
    Download
    Publication date
    2017
    Author
    Alzubaidi, Rania S.M.
    Supervisor
    Qahwaji, Rami S.R.
    Ipson, Stanley S.
    Sharif, Mhd Saeed
    Keyword
    Image processing
    Cornea
    Digital diagnostic
    Confocal microscopy
    Infectious keratitis
    Acanthamoeba
    Fusarium
    Corneal diseases
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    Confocal microscopy demonstrated its value in the diagnosis of Acanthamoeba and fungal keratitis which considered sight-threatening corneal diseases. However, it can be difficult to find and train confocal microscopy graders to accurately detect Acanthamoeba cysts and fungal filaments in the images. Use of an automated system could overcome this problem and help to start the correct treatment more quickly. Also, response to treatment can be difficult to assess in infectious keratitis using clinical examination alone, but there is evidence that the morphology of filaments and cysts may change over time with the use of correct treatment. An automated system to analyse confocal microscopy images for such changes would also assist clinicians in determining whether the ulcer is improving, or whether a change of treatment is needed. This research proposes a fully automated novel system with GUI to detect cysts and hyphae (filaments) and measure useful quantitative parameters for them through many stages; Image enhancement, image segmentation, quantitative analysis for detected cysts and hyphae, and registration and tracking of ordered sequence of images. The performance of the proposed segmentation procedure is evaluated by comparing between the manual and the automated traced images of the dataset that was provided by the Manchester Royal Eye Hospital. The positive predictive values rate of cysts for Acanthamoeba images was 76%. For detected hyphae in Fusarium images, many standard measurements were computed. The accuracy of their values was quantified by calculating the percent error rate for each measurement and which ranged from 23% to 49%.
    URI
    http://hdl.handle.net/10454/17142
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.