Biosynthetic PCL-graft-collagen bulk material for tissue engineering applications
View/ Open
Sefat_Materials.pdf (7.215Mb)
Download
Publication date
2017-06Rights
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Peer-Reviewed
YesOpen Access status
openAccess
Metadata
Show full item recordAbstract
Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)-graft-collagen (PCL-g-Coll) copolymer. We combine its good mechanical and biodegradable PCL properties with the great biological properties of type I collagen as a functional material for TE. PCL, previously dissolved in dimethylformamide/dichloromethane mixture, and reacted with collagen using carbodiimide coupling chemistry. The synthesised material was characterised physically, chemically and biologically, using pure PCL and PCL/Coll blend samples as control. Infrared spectroscopy evidenced the presence of amide I and II peaks for the conjugated material. Similarly, XPS evidenced the presence of C–N and N–C=O bonds (8.96 ± 2.02% and 8.52 ± 0.63%; respectively) for PCL-g-Coll. Static contact angles showed a slight decrease in the conjugated sample. However, good biocompatibility and metabolic activity was obtained on PCL-g-Coll films compared to PCL and blend controls. After 3 days of culture, fibroblasts exhibited a spindle-like morphology, spreading homogeneously along the PCL-g-Coll film surface. We have engineered a functional biosynthetic polymer that can be processed by electrospinning.Version
Published versionCitation
Gentile P, McColgan-Bannon K, Gianone NC et al (2017) Biosynthetic PCL-graft-collagen bulk material for tissue engineering applications. Materials. 10(7): 693.Link to Version of Record
https://doi.org/10.3390/ma10070693Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.3390/ma10070693