In vitro growth of human keratinocytes and oral cancer cells into microtissues: an aerosol-based microencapsulation technique
View/ Open
Youseffi_Bioengineering.pdf (9.805Mb)
Download
Publication date
2017-05Rights
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Peer-Reviewed
Yes
Metadata
Show full item recordAbstract
Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.Version
Published versionCitation
Leong WY, Soon CF, Wong SC et al (2017) In vitro growth of human keratinocytes and oral cancer cells into microtissues: an aerosol-based microencapsulation technique. Bioengineering. 4(2): 43.Link to Version of Record
https://doi.org/10.3390/bioengineering4020043Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.3390/bioengineering4020043