Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles
View/ Open
Assi_et_al_Int_Jnl_Pharmaceutics.pdf (1.061Mb)
Download
Publication date
25/02/2019Author
Al Ayoub, YuosefGopalan, Rajendran C.
Najafzadeh, Mojgan
Mohammad, Mohammad A.
Anderson, Diana
Paradkar, Anant R
Assi, Khaled H.
Rights
Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.Peer-Reviewed
YesOpen Access status
openAccess
Metadata
Show full item recordAbstract
Extensive research has demonstrated the potential effectiveness of curcumin against various diseases, including asthma and cancers. However, few studies have used liquid-based vehicles in the preparation of curcumin formulations. Therefore, the current study proposed the use of nanoemulsion and microsuspension formulations to prepare nebulised curcuminoid for lung delivery. Furthermore, this work expressed a new approach to understanding the aerosol performance of nanoparticles compared to microsuspension formulations. The genotoxicity of the formulations was also assessed. Curcuminoid nanoemulsion formulations were prepared in three concentrations (100, 250 and 500 µg/ml) using limonene and oleic acid as oil phases, while microsuspension solutions were prepared by suspending curcuminoid particles in isotonic solution (saline solution) of 0.02% Tween 80. The average fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of the nebulised microsuspension formulations ranged from 26% and 7.1 µm to 40% and 5.7 µm, for 1000 µg/ml and 100 µg/ml respectively. In a comparison of the low and high drug concentrations of the nebulised nanoemulsion, the average FPF and MMAD of the nebulised nanoemulsion formulations prepared with limonene oil ranged from 50% and 4.6 µm to 45% and 5.6 µm, respectively; whereas the FPF and MMAD of the nebulised nanoemulsion prepared with oleic acid oil ranged from 46% and 4.9 µm to 44% and 5.6 µm, respectively. The aerosol performance of the microsuspension formulations were concentration dependent, while the nanoemulsion formulations did not appear to be dependent on the curcuminoids concentration. The performance and genotoxicity results of the formulations suggest the suitability of these preparations for further inhalation studies in animals.Version
Accepted manuscriptCitation
Al Ayoub Y, Gopalan RC, Najafzadeh M et al (2019) Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. International Journal of Pharmaceutics. 557: 254-263.Link to Version of Record
https://doi.org/10.1016/j.ijpharm.2018.12.042Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.ijpharm.2018.12.042