BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Assi_et_al_Int_Jnl_Pharmaceutics.pdf (1.061Mb)
    Download
    Publication date
    2019-02-25
    Author
    Al Ayoub, Yuosef
    Gopalan, Rajendran C.
    Najafzadeh, Mojgan
    Mohammad, Mohammad A.
    Anderson, Diana
    Paradkar, Anant R.
    Assi, Khaled H.
    Keyword
    Nanoemulsion
    Microsuspension
    Curcuminoids
    Lung delivery
    Nebuliser formulation
    Genotoxicity
    Rights
    Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Extensive research has demonstrated the potential effectiveness of curcumin against various diseases, including asthma and cancers. However, few studies have used liquid-based vehicles in the preparation of curcumin formulations. Therefore, the current study proposed the use of nanoemulsion and microsuspension formulations to prepare nebulised curcuminoid for lung delivery. Furthermore, this work expressed a new approach to understanding the aerosol performance of nanoparticles compared to microsuspension formulations. The genotoxicity of the formulations was also assessed. Curcuminoid nanoemulsion formulations were prepared in three concentrations (100, 250 and 500 µg/ml) using limonene and oleic acid as oil phases, while microsuspension solutions were prepared by suspending curcuminoid particles in isotonic solution (saline solution) of 0.02% Tween 80. The average fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of the nebulised microsuspension formulations ranged from 26% and 7.1 µm to 40% and 5.7 µm, for 1000 µg/ml and 100 µg/ml respectively. In a comparison of the low and high drug concentrations of the nebulised nanoemulsion, the average FPF and MMAD of the nebulised nanoemulsion formulations prepared with limonene oil ranged from 50% and 4.6 µm to 45% and 5.6 µm, respectively; whereas the FPF and MMAD of the nebulised nanoemulsion prepared with oleic acid oil ranged from 46% and 4.9 µm to 44% and 5.6 µm, respectively. The aerosol performance of the microsuspension formulations were concentration dependent, while the nanoemulsion formulations did not appear to be dependent on the curcuminoids concentration. The performance and genotoxicity results of the formulations suggest the suitability of these preparations for further inhalation studies in animals.
    URI
    http://hdl.handle.net/10454/16775
    Version
    Accepted Manuscript
    Citation
    Al Ayoub Y, Gopalan RC, Najafzadeh M et al (2019) Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. International Journal of Pharmaceutics. 557: 254-263.
    Link to publisher’s version
    https://doi.org/10.1016/j.ijpharm.2018.12.042
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.