BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Standardising the Capture and Processing of Custody Images

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Main article (638.9Kb)
    Download
    Publication date
    2018
    Author
    Jilani, Shelina K.
    Ugail, Hassan
    Cole, S.
    Logan, Andrew J.
    Keyword
    Custody imaging
    Face
    Machine learning
    Identification
    Facial images
    Rights
    © 2018 Jilani et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Custody images are a standard feature of everyday Policing and are commonly used during investigative work to establish whether the perpetrator and the suspect are the same. The process of identification relies heavily on the quality of a custody image because a low-quality image may mask identifying features. With an increased demand for high quality facial images and the requirement to integrate biometrics and machine vision technology to the field of face identification, this research presents an innovative image capture and biometric recording system called the Halo. Halo is a pioneering system which (1) uses machine vision cameras to capture high quality facial images from 8 planes of view (including CCTV simulated), (2) uses high quality video technology to record identification parades and, (3) records biometric data from the face by using a Convolutional Neural Networks (CNN) based algorithm, which is a supervised machine learning technique. Results based on our preliminary experiments have concluded a 100% facial recognition rate for layer 34 within the VGG-Face model. These results are significant for the sector of forensic science, especially digital image capture and facial identification as they highlight the importance of image quality and demonstrates the complementing nature a robust machine learning algorithm has on an everyday Policing process.
    URI
    http://hdl.handle.net/10454/16753
    Version
    published version paper
    Citation
    Jilani SK, Ugail H, Cole S and Logan A (2018) Standardising the Capture and Processing of Custody Images. Current Journal of Applied Science and Technology. 30(5): 1-13.
    Link to publisher’s version
    https://doi.org/10.9734/CJAST/2018/44481
    Type
    Article
    Collections
    Engineering and Informatics Publications
    Health Studies Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.