BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Management and Law
    • Management and Law Publications
    • View Item
    •   Bradford Scholars
    • Management and Law
    • Management and Law Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A comparative analysis of two-stage distress prediction models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Mousavi_ESA.pdf (465.9Kb)
    Download
    Publication date
    2019-04-01
    Author
    Mousavi, Mohammad M.
    Quenniche, J.
    Tone, K.
    Keyword
    Corporate two-stage distress prediction
    Efficiency
    Data envelopment analysis
    Malmquist index
    Rights
    © 2018 Elsevier Ltd. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    On feature selection, as one of the critical steps to develop a distress prediction model (DPM), a variety of expert systems and machine learning approaches have analytically supported developers. Data envel- opment analysis (DEA) has provided this support by estimating the novel feature of managerial efficiency, which has frequently been used in recent two-stage DPMs. As key contributions, this study extends the application of expert system in credit scoring and distress prediction through applying diverse DEA mod- els to compute corporate market efficiency in addition to the prevailing managerial efficiency, and to estimate the decomposed measure of mix efficiency and investigate its contribution compared to Pure Technical Efficiency and Scale Efficiency in the performance of DPMs. Further, this paper provides a com- prehensive comparison between two-stage DPMs through estimating a variety of DEA efficiency measures in the first stage and employing static and dynamic classifiers in the second stage. Based on experimen- tal results, guidelines are provided to help practitioners develop two-stage DPMs; to be more specific, guidelines are provided to assist with the choice of the proper DEA models to use in the first stage, and the choice of the best corporate efficiency measures and classifiers to use in the second stage.
    URI
    http://hdl.handle.net/10454/16705
    Version
    Accepted Manuscript
    Citation
    Mousavi MM, Quenniche J and Tone K (2019) A comparative analysis of two-stage distress prediction models. Expert Systems with Applications. 119: 322-341.
    Link to publisher’s version
    https://doi.org/10.1016/j.eswa.2018.10.053
    Type
    Article
    Collections
    Management and Law Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.