BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Predicting the skin-permeating components of externally-applied medicinal herbs: application of a newly constructed linear free-energy relationship equation for human skin permeation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2018-06
    Author
    Zeng, X.
    Wang, Z.
    Liu, Xiangli
    Chen, M.
    Fahr, A.
    Zhang, K.
    Keyword
    Linear free-energy relationship (LFER) equation
    Skin-permeating components
    Medicinal herbs
    Human skin permeation
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    A linear free-energy relationship (LFER) equation that is able to provide a valid prediction of the skin permeability coefficients (log Kp) of neutral molecules, ions and ionic species has recently been constructed and optimized. This study aimed to evaluate the feasibility of predicting the skin-permeating components (SPCs) of externally applied herbs using the LFER equation, with Evodiae fructus (EF) taken as a model herb. The log Kp values of the reported chemical components of EF at pH 4.0 were calculated using the LFER equation and their structural descriptors. The results showed that the essential oils, quinolone, acridone and indole alkaloids of EF are more permeable when compared to other main components, such as phenylpropanoids, furoquinoline alkaloids, limonoids and flavonoids. The SPCs of EF were further collected via ex vivo skin permeation experiments, and analyzed by liquid chromatography-high resolution tandem mass spectrometry. A total of 80 SPCs were detected, and part of them were tentatively identified based on their empirical molecular formulae and MS/MS spectra. The SPCs are made up of 58 alkaloids, including 23 or more quinolone alkaloids, 14 or more indole alkaloids and 1 acridone alkaloid, and 22 non-alkaloids, including 7 or more essential oils and 1 flavonoid, which is in good agreement with the prediction by the LFER equation. It is suggested that a log Kp of −7.0 may be considered as a borderline, above which are potential SPCs and below which are non-SPCs. Very interestingly, the primary SPCs give a good explanation to the antihypertensive action of externally applied EF. To sum up, the LFER equation can be used to predict the SPCs of externally applied herbs, and thus to narrow the range of their potential effective components and speed up the pharmacological study.
    URI
    http://hdl.handle.net/10454/16668
    Version
    No full-text in the repository
    Citation
    Zeng X, Wang Z, Liu X et al (2018) Predicting the skin-permeating components of externally-applied medicinal herbs: application of a newly constructed linear free-energy relationship equation for human skin permeation. New Journal of Chemistry. 42(14): 11930-11943.
    Link to publisher’s version
    http://dx.doi.org/10.1039/C8NJ00929E
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.