Investigation of Simultaneous Effects of Surface Roughness, Porosity, and Magnetic Field of Rough Porous Microfin Under a Convective-Radiative Heat Transfer for Improved Microprocessor Cooling of Consumer Electronics
View/ Open
oguntala_et_al_2019.pdf (4.438Mb)
Download
Publication date
2019-022019-02
Keyword
Electronic coolingThermal management
Heatsink
Micro-fin
Surface roughness
Microprocessor cooling
Rights
© 2019 IEEE. Reproduced in accordance with the publisher's self-archiving policy. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Peer-Reviewed
YesAccepted for publication
2018-10-13
Metadata
Show full item recordAbstract
The ever-increasing demand for high-processing electronic systems has unequivocally called for improved microprocessor performance. However, increasing microprocessor performance requires increasing power and on-chip power density, both of which are associated with increased heat dissipation. Electronic cooling using fins have been identified as a reliable cooling approach. However, an investigation into the thermal behaviour of fin would help in the design of miniaturized, effective heatsinks for reliable microprocessor cooling. The aim of this paper is to investigates the simultaneous effects of surface roughness, porosity and magnetic field on the performance of a porous micro-fin under a convective-radiative heat transfer mechanism. The developed thermal model considers variable thermal properties according to linear, exponential and power laws, and are solved using Chebychev spectral collocation method. Parametric studies are carried using the numerical solutions to establish the influences of porosity, surface roughness, and magnetic field on the microfin thermal behaviour. Following the results of the simulation, it is established that the thermal efficiency of the micro-fin is significantly affected by the porosity, magnetic field, geometric ratio, nonlinear thermal conductivity parameter, thermogeometric parameter and the surface roughness of the micro-fin. However, the performance of the micro-fin decreases when it operates only in a convective environment. In addition, we establish that the fin efficiency ratio which is the ratio of the efficiency of the rough fin to the efficiency of the smooth fin is found to be greater than unity when the rough and smooth fins of equal geometrical, physical, thermal and material properties are subjected to the same operating condition. The investigation establishes that improved thermal management of electronic systems would be achieved using rough surface fins with porosity under the influences of the magnetic field.Version
Accepted manuscriptCitation
Oguntala GA, Sobamowo G, Eya NN et al (2019) Investigation of Simultaneous Effects of Surface Roughness, Porosity, and Magnetic Field of Rough Porous Microfin Under a Convective-Radiative Heat Transfer for Improved Microprocessor Cooling of Consumer Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology. 9(2): 235-246.Link to Version of Record
https://doi.org/10.1109/TCPMT.2018.2878737Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1109/TCPMT.2018.2878737