BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Application of approximate analytical technique using the homotopy perturbation method to study the inclination effect on the thermal behavior of porous fin heat sink

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Abd-Alhameed_Mathematical_and_Computational_Applications.pdf (1.962Mb)
    Download
    Publication date
    2018-10
    Author
    Oguntala, George A.
    Sobamowo, G.
    Ahmed, Y.
    Abd-Alhameed, Raed A.
    Keyword
    Approximate analytical analysis
    Heat sink
    Porous fin
    Homotopy perturbation method
    Rights
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    This article presents the homotopy perturbation method (HPM) employed to investigate the effects of inclination on the thermal behavior of a porous fin heat sink. The study aims to review the thermal characterization of heat sink with the inclined porous fin of rectangular geometry. The study establishes that heat sink of an inclined porous fin shows a higher thermal performance compared to a heat sink of equal dimension with a vertical porous fin. In addition, the study also shows that the performance of inclined or tilted fin increases with decrease in length–thickness aspect ratio. The study further reveals that increase in the internal heat generation variable decreases the fin temperature gradient, which invariably decreases the heat transfer of the fin. The obtained results using HPM highlights the accuracy of the present method for the analysis of nonlinear heat transfer problems, as it agrees well with the established results of Runge–Kutta.
    URI
    http://hdl.handle.net/10454/16637
    Version
    published version paper
    Citation
    Oguntala G, Sobamowo G, Ahmed Y et al (2018) Application of approximate analytical technique using the homotopy perturbation method to study the inclination effect on the thermal behavior of porous fin heat sink. Mathematical and Computational Applications. 23(4): 62.
    Link to publisher’s version
    https://doi.org/10.3390/mca23040062
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.