BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Thornton_et_al_Lasers_in_Surgery_and_Medicine.pdf (2.734Mb)
    Download
    Publication date
    2019-04
    Author
    Castellano-Pellicena, Irene
    Uzunbajakava, N.E.
    Mignon, Charles
    Raafs, B.
    Botchkarev, Vladimir A.
    Thornton, M. Julie
    Keyword
    Photobiomodulation
    Blue light
    Red light
    Opsins
    OPN1-SW
    OPN3
    OPN5
    Epidermal keratinocytes
    Ex vivo wound healing and epidermal barrier
    Rights
    © 2018 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Castellano-Pellicena I, Uzunbajakava NE, Mignon C et al (2018) Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers in Surgery and Medicine. 51(4): 370-382, which has been published in final form at https://doi.org/10.1002/lsm.23015. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Background and Objective Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light‐based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV‐blue light can activate Opsin 1‐SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. Materials and Methods Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro‐dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT‐PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch‐wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. Results Opsin receptors (OPN1‐SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. Conclusions Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light‐based therapies for cutaneous wound healing.
    URI
    http://hdl.handle.net/10454/16624
    Version
    Accepted Manuscript
    Citation
    Castellano-Pellicena I, Uzunbajakava NE, Mignon C et al (2019) Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers in Surgery and Medicine. 51(4): 370-382.
    Link to publisher’s version
    https://doi.org/10.1002/lsm.23015
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.