BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Fast and Accurate Iris Localization Technique for Healthcare Security System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Conference paper (392.8Kb)
    Download
    Publication date
    2015
    Author
    Al-Waisy, Alaa S.
    Qahwaji, Rami S.R.
    Ipson, Stanley S.
    Al-Fahdawi, Shumoos
    Keyword
    Iris localization
    Iris segmentation
    Radon transform
    Circular Hough transform
    SDUMLA-HMT iris database
    CASIA database
    Iris recognition
    Healthcare security system
    Patient identification
    Rights
    © 2015 IEEE. Reproduced in accordance with the publisher's self-archiving policy. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Peer-Reviewed
    n/a
    
    Metadata
    Show full item record
    Abstract
    In the health care systems, a high security level is required to protect extremely sensitive patient records. The goal is to provide a secure access to the right records at the right time with high patient privacy. As the most accurate biometric system, the iris recognition can play a significant role in healthcare applications for accurate patient identification. In this paper, the corner stone towards building a fast and robust iris recognition system for healthcare applications is addressed, which is known as iris localization. Iris localization is an essential step for efficient iris recognition systems. The presence of extraneous features such as eyelashes, eyelids, pupil and reflection spots make the correct iris localization challenging. In this paper, an efficient and automatic method is presented for the inner and outer iris boundary localization. The inner pupil boundary is detected after eliminating specular reflections using a combination of thresholding and morphological operations. Then, the outer iris boundary is detected using the modified Circular Hough transform. An efficient preprocessing procedure is proposed to enhance the iris boundary by applying 2D Gaussian filter and Histogram equalization processes. In addition, the pupil’s parameters (e.g. radius and center coordinates) are employed to reduce the search time of the Hough transform by discarding the unnecessary edge points within the iris region. Finally, a robust and fast eyelids detection algorithm is developed which employs an anisotropic diffusion filter with Radon transform to fit the upper and lower eyelids boundaries. The performance of the proposed method is tested on two databases: CASIA Version 1.0 and SDUMLA-HMT iris database. The Experimental results demonstrate the efficiency of the proposed method. Moreover, a comparative study with other established methods is also carried out.
    URI
    http://hdl.handle.net/10454/16599
    Version
    Accepted Manuscript
    Citation
    Al-Waisy AS, Qahwaji R, Ipson S and Al-Fahdawi S (2015) A Fast and Accurate Iris Localization Technique for Healthcare Security System. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, 26-28 Oct. IEEE. pp 1028-1034.
    Link to publisher’s version
    https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.156
    Type
    Conference paper
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.