Show simple item record

dc.contributor.authorMat Jasin, A.*
dc.contributor.authorNeagu, Daniel*
dc.contributor.authorCsenki, Attila*
dc.date.accessioned2018-10-08T11:42:22Z
dc.date.available2018-10-08T11:42:22Z
dc.date.issued2018-07
dc.identifier.citationMat Jasin A, Neagu D and Csenki A (2018) The wild bootstrap resampling in regression imputation algorithm with a Gaussian Mixture Model. In: Perner P (Ed.) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science, vol 10935. Springer, Cham: 219-230.
dc.identifier.urihttp://hdl.handle.net/10454/16593
dc.descriptionYes
dc.description.abstractUnsupervised learning of finite Gaussian mixture model (FGMM) is used to learn the distribution of population data. This paper proposes the use of the wild bootstrapping to create the variability of the imputed data in single miss-ing data imputation. We compare the performance and accuracy of the proposed method in single imputation and multiple imputation from the R-package Amelia II using RMSE, R-squared, MAE and MAPE. The proposed method shows better performance when compared with the multiple imputation (MI) which is indeed known as the golden method of missing data imputation techniques.
dc.language.isoenen
dc.rights© Springer International Publishing AG, part of Springer Nature 2018. Reproduced in accordance with the publisher's self-archiving policy.
dc.subjectMissing data imputation
dc.subjectGaussian Mixture Model
dc.subjectBootstrap
dc.titleThe wild bootstrap resampling in regression imputation algorithm with a Gaussian Mixture Model
dc.status.refereedYes
dc.date.application2018-07-08
dc.typeConference paper
dc.type.versionAccepted manuscript
dc.identifier.doihttps://doi.org/10.1007/978-3-319-96133-0_17
dc.rights.licenseUnspecified
refterms.dateFOA2018-10-08T11:42:25Z
dc.openaccess.statusopenAccess
dc.date.accepted2018-07-15


Item file(s)

Thumbnail
Name:
Neagu_et_al_MLDM_2018.pdf
Size:
877.5Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record