BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MicroRNA‐21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Riches-Suman_IUBMB_final.pdf (829.7Kb)
    Download
    Publication date
    2018-07
    Author
    Alshanwani, A.R.
    Riches-Suman, Kirsten
    O'Regan, D.J.
    Wood, I.C.
    Turner, N.A.
    Porter, K.E.
    Keyword
    MicroRNA-21
    Platelet-derived growth factor
    Saphenous vein
    Smooth muscle cell
    Phenotype
    Remodeling
    Rights
    © 2018 International Union of Biochemistry and Molecular Biology. This is the peer reviewed version of the following article: Alshanwani AR, Riches-Suman K, O’Regan DJ et al (2018) MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells. IUBMB Life. 70(7): 649-657, which has been published in final form at https://doi.org/10.1002/iub.1751. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Cardiovascular disease is a leading cause of morbidity and mortality. Smooth muscle cells (SMC) comprising the vascular wall can switch phenotypes from contractile to synthetic, which can promote the development of aberrant remodelling and intimal hyperplasia (IH). MicroRNA‐21 (miR‐21) is a short, non‐coding RNA that has been implicated in cardiovascular diseases including proliferative vascular disease and ischaemic heart disease. However, its involvement in the complex development of atherosclerosis has yet to be ascertained. Smooth muscle cells (SMC) were isolated from human saphenous veins (SV). miR‐21 was over‐expressed and the impact of this on morphology, proliferation, gene and protein expression related to synthetic SMC phenotypes monitored. Over‐expression of miR‐21 increased the spread cell area and proliferative capacity of SV‐SMC and expression of MMP‐1, whilst reducing RECK protein, indicating a switch to the synthetic phenotype. Furthermore, platelet‐derived growth factor BB (PDGF‐BB; a growth factor implicated in vasculoproliferative conditions) was able to induce miR‐21 expression via the PI3K and ERK signalling pathways. This study has revealed a mechanism whereby PDGF‐BB induces expression of miR‐21 in SV‐SMC, subsequently driving conversion to a synthetic SMC phenotype, propagating the development of IH. Thus, these signaling pathways may be attractive therapeutic targets to minimise progression of the disease.
    URI
    http://hdl.handle.net/10454/16246
    Version
    Accepted Manuscript
    Citation
    Alshanwani AR, Riches-Suman K, O’Regan DJ et al (2018) MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells. IUBMB Life. 70(7): 649-657.
    Link to publisher’s version
    https://doi.org/10.1002/iub.1751
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.