Energy Efficient Cloud Computing Based Radio Access Networks in 5G. Design and evaluation of an energy aware 5G cloud radio access networks framework using base station sleeping, cloud computing based workload consolidation and mobile edge computing

View/ Open
PhD Thesis (6.142Mb)
Download
Publication date
2017Author
Sigwele, TshiamoSupervisor
Pillai, PrashantHu, Yim Fun
Keyword
Base station sleepingCloud computing
Cloud radio access networks
Energy efficiency
Heterogeneous networks
Mobile edge computing
Virtual machine placement
Virtualisation
Fifth generation (5G)
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Faculty of Engineering and InformaticsAwarded
2017
Metadata
Show full item recordAbstract
Fifth Generation (5G) cellular networks will experience a thousand-fold increase in data traffic with over 100 billion connected devices by 2020. In order to support this skyrocketing traffic demand, smaller base stations (BSs) are deployed to increase capacity. However, more BSs increase energy consumption which contributes to operational expenditure (OPEX) and CO2 emissions. Also, an introduction of a plethora of 5G applications running in the mobile devices cause a significant amount of energy consumption in the mobile devices. This thesis presents a novel framework for energy efficiency in 5G cloud radio access networks (C-RAN) by leveraging cloud computing technology. Energy efficiency is achieved in three ways; (i) at the radio side of H-C-RAN (Heterogeneous C-RAN), a dynamic BS switching off algorithm is proposed to minimise energy consumption while maintaining Quality of Service (QoS), (ii) in the BS cloud, baseband workload consolidation schemes are proposed based on simulated annealing and genetic algorithms to minimise energy consumption in the cloud, where also advanced fuzzy based admission control with pre-emption is implemented to improve QoS and resource utilisation (iii) at the mobile device side, Mobile Edge Computing (MEC) is used where computer intensive tasks from the mobile device are executed in the MEC server in the cloud. The simulation results show that the proposed framework effectively reduced energy consumption by up to 48% within RAN and 57% in the mobile devices, and improved network energy efficiency by a factor of 10, network throughput by a factor of 2.7 and resource utilisation by 54% while maintaining QoS.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Analysis of cloud testbeds using opensource solutionsMohammed, Bashir; Kiran, Mariam (2015)Cloud computing is increasingly attracting large attention both in academic research and in industrial initiatives. However, despite the popularity, there is a lack of research on the suitability of software tools and parameters for creating and deploying Cloud test beds. Virtualization and how to set up virtual environments can be done through software tools, which are available as open source, but there still needs to be work in terms of which tools to use and how to monitor parameters with the suitability of hardware resources available. This paper discusses the concepts of virtualization, as a practical view point, presenting an in-depth critical analysis of open source cloud implementation tools such as CloudStack, Eucalyptus, Nimbus, OpenStack, OpenNebula, OpenIoT, to name a few. This paper analyzes the various toolkits, parameters of these tools, and their usability for researchers looking to deploy their own Cloud test beds. The paper also extends further in developing an experimental case study of using OpenStack to construct and deploy a test bed using current resources available in the labs at the University of Bradford. This paper contributes to the theme of software setups and open source issues for developing Cloud test bed for deploying and constructing private Cloud test bed.
-
Energy efficient cloud computing based radio access networks in 5G: Design and evaluation of an energy aware 5G cloud radio access networks framework using base station sleeping, cloud computing based workload consolidation and mobile edge computingPillai, Prashant; Hu, Yim Fun; Sigwele, TshiamoFifth Generation (5G) cellular networks will experience a thousand-fold increase in data traffic with over 100 billion connected devices by 2020. In order to support this skyrocketing traffic demand, smaller base stations (BSs) are deployed to increase capacity. However, more BSs increases energy consumption which contributes to operational expenditure (OPEX) and CO2 emissions. Also, an introduction of a plethora of 5G applications running in the mobile devices causes a significant amount of energy consumption in the mobile devices. This thesis presents a novel framework for energy efficiency in 5G cloud radio access networks (C-RAN) by leveraging cloud computing technology. Energy efficiency is achieved in three ways; (i) at the radio side of H-C-RAN (Heterogeneous C-RAN), a dynamic BS switching off algorithm is proposed to minimise energy consumption while maintaining Quality of Service (QoS), (ii) in the BS cloud, baseband workload consolidation schemes are proposed based on simulated annealing and genetic algorithms to minimise energy consumption in the cloud, where also advanced fuzzy based admission control with pre-emption is implemented to improve QoS and resource utilisation (iii) at the mobile device side, Mobile Edge Computing (MEC) is used where computer intensive tasks from the mobile device are executed in the MEC server in the cloud. The simulation results show that the proposed framework effectively reduced energy consumption by up to 48% within RAN and 57% in the mobile devices, and improved network energy efficiency by a factor of 10, network throughput by a factor of 2.7 and resource utilisation by 54% while maintaining QoS.
-
Risks and rewards of cloud computing in the UK public sector: A reflection on three Organisational case studiesJones, S.; Irani, Zahir; Sivarajah, Uthayasankar; Love, P.E.D. (2017)Government organisations have been shifting to cloud-based services in order to reduce their total investments in IT infrastructures and resources (e.g. data centers), as well as capitalise on cloud computing’s numerous rewards. However, just like any other technology investments there are also concerns over the potential risks of implementing cloud-based technologies. Such concerns and the paucity of scholarly literature focusing on cloud computing from a governmental context confirm the need for exploratory research and to draw lessons for government authorities and others in order to ensure a reduction in costly mistakes. This paper therefore investigates the implementation of cloud computing in both a practical setting and from an organisational user perspective via three UK local government authorities. Through the qualitative case study enquiries, the authors are able to extrapolate perceived rewards and risks factors which are mapped against the literature so that emergent factors can be identified. All three cloud deployments resulted in varying outcomes which included key rewards such as improved information management, flexibility of work practices and also posed risks such as loss of control and lack of data ownership to the organisations. These findings derived from the aggregated organisational user perspectives will be of benefit to both academics and practitioners engaged in cloud computing research and its strategic implementation in the public sector.