BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ultrasound Assisted Processing of Solid State Pharmaceuticals. The application of ultrasonic energy in novel solid state pharmaceutical applications, including solvent free co-crystallisation (SFCC) and enhanced compressibility

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (7.859Mb)
    Download
    Publication date
    2017
    Author
    Alwati, Abdolati A.M.
    Supervisor
    Kelly, Adrian L.
    Paradkar, Anant R.
    Brown, Elaine C.
    Keyword
    Co-crystallisation
    Ultrasonic energy
    Tabletability
    Solvent-free ultrasound
    Ultrasound (US) technique
    Ibuprofen-nicotinamide (IBU-NIC)
    Carbamazepine-nicotinamide (CBZ-NIC)
    Carbamazepine-saccharin (CBZ-SAC)
    Ultrasonic energy
    High power ultrasound (HPU)
    Pharmaceutical co-crystals
    Show allShow less
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Life Sciences
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    The objective of this study was to develop a new method for co-crystal preparation which adhered to green chemistry principles, and provided advantages over conventional methods. A novel, solvent-free, high-power ultrasound (US) technique, for preparing co-crystals from binary systems, was chosen as the technology which could fulfil these aims. The application of this technology for solid state co-crystal preparation was explored for ibuprofen-nicotinamide (IBU-NIC), carbamazepine-nicotinamide (CBZ-NIC) and carbamazepine-saccharin (CBZ-SAC) co-crystals. The effect of different additives and processing parameters such as power level, temperature and sonication time on co-crystallisation was investigated. Characterisation was carried out using DSC, PXRD, FTIR, Raman and HPLC. In addition, an NIR prediction model was developed and combined with multivariate analysis (PLS) and chemometric pre-treatments. It was found to be a robust, reliable and rapid method for the determination of co-crystal purity for the IBU-NIC and CBZ-NIC pairs. Co-crystal quantification of US samples helped to optimise the US method. Finally, a model formulation of paracetamol containing 5% and 10% PEG 8000 was ultrasonicated at maximum power with different exposure times. A comparison of technological and physicochemical properties of the resulting tablets with those of the tablets obtained using the pressing method evidenced significant differences. This suggested that US energy dissipation (mechanical and thermal effects) was the main mechanism which caused the PAR form I tabletability to improve. It was found that the ultrasound–compacted tablets released the drug at a slower rate compared to pure PAR. This technique was shown to be useful for improving tabletability for low-compressible drugs without the need to use a conventional tabletting machine.
    URI
    http://hdl.handle.net/10454/16042
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.