Development of an Integrated Interface Modelling Methodology to Support System Architecture Analysis
View/ Open
PhD Thesis (7.004Mb)
Download
Publication date
2016Author
Uddin, AmadKeyword
Systems engineeringEngineering design
Interface
Interaction
System architecture
System of Systems (SoS)
Design methodology
Rights
The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Faculty of Engineering and InformaticsAwarded
2016
Metadata
Show full item recordAbstract
This thesis presents the development and validation of a novel interface modelling methodology integrated with a system architectural analysis framework that emphasises the need to manage the integrity of deriving and allocating requirements across multiple levels of abstraction in a structured manner. The state of the art review in this research shows that there is no shared or complete interface definition model that could integrate diverse interaction viewpoints for defining system requirements with complete information. Furthermore, while existing system modelling approaches define system architecture with functions and their allocation to subsystems to meet system requirements, they do not robustly address the importance of considering well-defined interfaces in an integrated manner at each level of systems hierarchy. This results in decomposition and integration issues across the multiple levels of systems hierarchy. Therefore, this thesis develops and validates following: -Interface Analysis Template as a systematic tool that integrates diverse interaction viewpoints for modelling system interfaces with intensive information for deriving requirements. -Coupling Matrix as an architecture analysis framework that not only allocates functions to subsystems to meet requirements but also promotes consistent consideration of well-defined interfaces at each level of design hierarchy. Insights from the validation of developed approach with engineering case studies within an automotive OEM are discussed, reflecting on the effectiveness, efficiency and usability of the methods.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Thermo-Economic Modelling of Micro-Cogeneration Systems System Design for Sustainable Power Decentralization by Multi-Physics System Modelling and Micro-Cogeneration Systems Performance Analysis for the UK Domestic Housing SectorEbrahimi, Kambiz M.; Kalantzis, Nikolaos (University of BradfordFaculty of Engineering and Informatics, 2015)Micro-cogeneration is one of the technologies promoted as a response to the global call for the reduction of carbon emissions. Due to its recent application in the residential sector, the implications of its usage have not yet been fully explored, while at the same time, the available simulation tools are not designed for conducting research that focuses on the study of this technology. This thesis develops a virtual prototyping environment, using a dynamic multi-physics simulation tool. The model based procedure in its current form focuses on ICE based micro-CHP systems. In the process of developing the models, new approaches on general system, engine, heat exchanger, and dwelling thermal modelling are being introduced to cater for the special nature of the subject. The developed software is a unique modular simulation tool platform linking a number of independent energy generation systems, and presents a new approach in the study and design of the multi node distributed energy system (DES) with the option of further development into a real-time residential energy management system capable of reducing fuel consumption and CO2 emissions in the domestic sector. In the final chapters, the developed software is used to simulate various internal combustion engine based micro-CHP configurations in order to conclude on the system design characteristics, as well as the conditions, necessary to achieve a high technical, economic and environmental performance in the UK residential sector with the purpose of making micro- CHP a viable alternative to the conventional means of heat & power supply.
-
The Influence of Braking System Component Design Parameters on Pedal Force and Displacement Characteristics. Simulation of a passenger car brake system, focusing on the prediction of brake pedal force and displacement based on the system components and their design characteristics.Day, Andrew J.; Hussain, Khalid; Ho, Hon Ping (University of BradfordSchool of Engineering, Design and Technology, 2015-10-23)This thesis presents an investigation of braking system characteristics, brake system performance and brake system component design parameters that influence brake pedal force / displacement characteristics as ‘felt’ by the driver in a passenger car. It includes detailed studies of individual brake system component design parameters, operation, and the linear and nonlinear characteristics of internal components through experimental study and simulation modelling. The prediction of brake pedal ‘feel’ in brake system simulation has been achieved using the simulation modelling package AMESim. Each individual brake system component was modelled individually before combining them into the whole brake system in order to identify the parameters and the internal components characteristics that influence the brake pedal ‘feel’. The simulation predictions were validated by experimentally measured data and demonstrated the accuracy of simulation modelling. Axisymmetric Finite Element Analysis (using the ABAQUS software) was used to predict the behaviour of nonlinear elastomeric internal components such as the piston seal and the booster reaction disc which was then included in the AMESim simulation model. The seal model FEA highlighted the effects of master cylinder and caliper seal deformation on the brake pedal ‘feel’. The characteristics of the brake booster reaction disc were predicted by the FEA and AMESim simulation modelling and these results highlighted the importance of the nonlinear material characteristics, and their potential contribution to brake pedal ‘feel’ improvement. A full brake system simulation model was designed, prepared, and used to predict brake system performance and to design a system with better brake pedal ‘feel’. Each of the brake system component design parameters was validated to ensure that the braking system performance was accurately predicted. The critical parameter of brake booster air valve spring stiffness was identified to improve the brake ‘pedal ‘feel’. This research has contributed to the advancement of automotive engineering by providing a method for brake system engineers to design a braking system with improved pedal ‘feel’. The simulation model can be used in the future to provide an accurate prediction of brake system performance at the design stage thereby saving time and cost.
-
Performance modelling and evaluation of heterogeneous wired / wireless networks under Bursty Traffic. Analytical models for performance analysis of communication networks in multi-computer systems, multi-cluster systems, and integrated wireless systems.Min, Geyong; Yulei, W.U. (University of BradfordSchool of Computing, Informatics and Media, 2010-09-01)Computer networks can be classified into two broad categories: wired networks and wireless networks, according to the hardware and software technologies used to interconnect the individual devices. Wired interconnection networks are hardware fabrics supporting communications between individual processors in highperformance computing systems (e.g., multi-computer systems and cluster systems). On the other hand, due to the rapid development of wireless technologies, wireless networks have emerged and become an indispensable part for people¿s lives. The integration of different wireless technologies is an effective approach to accommodate the increasing demand of the users to communicate with each other and access the Internet. This thesis aims to investigate the performance of wired interconnection networks and integrated wireless networks under the realistic working conditions. Traffic patterns have a significant impact on network performance. A number of recent measurement studies have convincingly demonstrated that the traffic generated by many real-world applications in communication networks exhibits bursty arrival nature and the message destinations are non-uniformly distributed. Analytical models for the performance evaluation of wired interconnection networks and integrated wireless networks have been widely reported. However, most of these models are developed under the simplified assumption of non-bursty Poisson process with uniformly distributed message destinations. To fill this gap, this thesis first presents an analytical model to investigate the performance of wired interconnection networks in multi-computer systems. Secondly, the analytical models for wired interconnection networks in multi-cluster systems are developed. Finally, this thesis proposes analytical models to evaluate the end-to-end delay and throughput of integrated wireless local area networks and wireless mesh networks. These models are derived when the networks are subject to bursty traffic with non-uniformly distributed message destinations which can capture the burstiness of real-world network traffic in the both temporal domain and spatial domain. Extensive simulation experiments are conducted to validate the accuracy of the analytical models. The models are then used as practical and cost-effective tools to investigate the performance of heterogeneous wired or wireless networks under the traffic patterns exhibited by real-world applications.