BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of Soil Resistance Damping on Wave-induced Pore Pressure Accumulation around a Composite Breakwater

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2018-07
    Author
    Zhang, J.
    Tong, L.
    Zheng, J.
    He, R.
    Guo, Yakun
    Keyword
    Residual pore pressure; Soil resistance damping; Liquefaction; Wave; Composite Breakwater
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    It is important to consider the potential instability of the seabed due to the accumulation of wave-induced pore pressure in the design of a composite breakwater as the pore pressure within the seabed can considerably build-up under waves loading and eventually leads to a sharp decrease of the effective stress. Due to the importance in practical engineering, many theoretical models have been developed to evaluate the magnitude and distribution of the residual pore pressure. However, most of these studies treat the soil skeleton as an invariant medium, which ignores the damping of the soil strength due to the reduction of the effective stress. In this study, a two-dimensional poro-elastoplastic model, in which the influence of the reduction of the effective stress on the soil strength has been considered, is proposed to investigate the accumulation of pore water pressure around a composite breakwater and its effect on the soil characteristics. The simulation results show that the liquefaction is likely to occur around the toe of the breakwater due to the accumulation of pore water pressure there. The liquefaction leads to the decrease of soil resistance, which has great effect on the development of the residual pore pressure. Analysis shows that the development of residual pore pressure is also greatly affected by both the wave height and soil permeability. The simulation demonstrates that if the decrease of soil resistance is not considered, the soil liquefaction depth will be overestimated.
    URI
    http://hdl.handle.net/10454/15581
    Version
    No full-text in the repository
    Citation
    Zhang J, Tong L, Zheng J et al (2018) Effects of Soil Resistance Damping on Wave-induced Pore Pressure Accumulation around a Composite Breakwater. Journal of Coastal Research. Accepted for publication.
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.