BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a Dry Powder Inhaler and Nebulised Nanoparticle-Based Formulations of Curcuminoids for the Potential Treatment of Lung Cancer. Development of Drug Delivery Formulations of Curcuminoids to the Lungs using Air Jet Milling and Sonocrystallisation Techniques for Dry Powder Inhaler Preparations; and Nanoemulsion and Microsuspension for Nebuliser Formulations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (4.992Mb)
    Download
    Publication date
    2017
    Author
    Al Ayoub, Yuosef
    Supervisor
    Assi, Khaled H.
    Paradkar, Anant R.
    Keyword
    Curcumin
    Demethoxycurcumin
    Bisdemethoxycurcumin
    Dry powder inhaler
    Air jet milling
    Sonocrystallisation
    Nebuliser
    Nanoemulsion
    Microsuspension
    Particles aerodynamic characterisations
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Pharmacy
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    Curcuminoids have strong anticancer activities but have low bioavailability. The highest rate of cancer deaths comes from lung tumours; therefore, inhaled curcuminoids could treat lung cancer locally. To date, there are no nebulised formulations of curcuminoids, and there are no inhalable curcuminoids particles without excipients using air jet mill and sonocrystallisation methods for DPI formulations. It is the first time; the aerodynamic parameters of curcumin, demethoxycurcumin and bisdemethoxycurcumin were measured individually using NGI. The size, shape, free surface energy, and the crystal polymorphism of the produced inhalable curcuminoid particles were characterised using laser diffraction, SEM, IGC, DSC and XRPD, respectively. Several DPI formulations with a variable particle size of curcuminoids were prepared in two drug-carrier ratios (1:9 and 1:67.5). The best performance of the DPI formulations of the sonocrystallised particles, which exist in crystal structure form1, were obtained from ethanol- heptane, as illustrated FPF 43.4%, 43.6% and 43.4% with MMAD of 3.6µm, 3.5µm and 3.4µm, whereas the best DPI formulation of the air jet milled particles was presented FPF 38.0%, 38.9%, and 39.5% with MMAD of 3.6µm, 3.4µm and 3.2µm for curcumin, demethoxycurcumin and bisdemethoxycurcumin, respectively. Nebulised curcuminoids using nanoemulsion and microsuspension formulations were prepared. The physical properties, such as osmolality, pH and the viscosity of the aerosolised nanoemulsion and the microsuspension formulations were determined. The FPF% and MMAD of nebulised nanoemulsion ranged from 44% to 50% and from 4.5µm to 5.5µm respectively. In contrast, the FPF% of microsuspension ranged from 26% to 40% and the MMAD from 5.8µm to 7.05µm. A HPLC method was developed and validated in order to be used in the determination of curcuminoids from an aqueous solution.
    URI
    http://hdl.handle.net/10454/15324
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.