BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Numerical modelling and sensitivity analysis of natural draft cooling towers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Mujtaba_CPPM.pdf (750.0Kb)
    Download
    Publication date
    2018-12
    Author
    Dhorat, A.
    Al-Obaidi, Mudhar A.A.R.
    Mujtaba, Iqbal M.
    Keyword
    Cooling towers; Numerical modelling; Sensitivity analysis; Mass transfer; Cost analysis
    Rights
    © 2018 De Gruyter. Reproduced in accordance with the publisher's self-archiving policy.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Cooling towers are a relatively inexpensive and consistent method of ejecting heat from several industries such as thermal power plants, refineries, and food processing. In this research, an earlier model from literature was to be validated across three different case studies. Unlike previous models, this model considers the height of the fill as the discretised domain, which produces results that give it in a distribution form along the height of the tower. As there are limitations with the software used (gPROMS) where differential equations with respect to independent variables in the numerator and denominator cannot be solved, a derivative of the saturation vapour pressure with respect to the temperature of the air was presented. Results shown were in agreement with the literature and a parametric sensitivity analysis of the cooling tower design and operating parameters were undertaken. In this work the height of fill, mass flowrates of water and air were studied with respect to sensitivity analysis. Results had shown large variations in the outlet temperatures of the water and air if the mass flows of water and air were significantly reduced. However, upon high values of either variable had shown only small gains in the rejection of heat from the water stream. With respect to the height of the fill, at larger heights of the fill, the outlet water temperature had reduced significantly. From a cost perspective, it was found that a change in the water flowrate had incurred the largest cost penalty with a 1% increase in flowrate had increased the average operating cost by 1.2%. In comparison, a change in air flowrate where a 1% increase in flowrate had yielded an average of 0.4% increase in operating cost.
    URI
    http://hdl.handle.net/10454/15281
    Version
    Accepted Manuscript
    Citation
    Dhorat A, Al-Obaidi MA and Mujtaba IM (2018) Numerical modelling and sensitivity analysis of natural draft cooling towers. Chemical Product and Process Modeling. 13(4): 20170078.
    Link to publisher’s version
    https://doi.org/10.1515/cppm-2017-0078
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.