BRADFORD SCHOLARS

    • Sign in
    Search 
    •   Bradford Scholars
    • Life Sciences
    • Search
    •   Bradford Scholars
    • Life Sciences
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CommunityAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    Filter by Category

    AuthorMcKeefry, Declan J. (2)Anderson, Diana (1)Dhawan, A. (1)Gouws, A.D. (1)Hymers, M. (1)Jacob, B.K. (1)Kremers, Jan (1)Kumar, A. (1)Lee, B.B. (1)Morland, A.B. (1)View MoreSubject; Humans (3)
    ; Male (3)
    ; Middle aged (3)
    Adult (3)
    ; Female (2); Photic stimulation (2); REF 2014 (2); Aged (1); Asthma (1); Brain mapping; Methods (1)View MoreDate Issued2015 (1)2013 (1)2012 (1)

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Simultaneous chromatic and luminance human electroretinogram responses

    Parry, Neil R.A.; Murray, I.J.; Panorgias, A.; McKeefry, Declan J.; Lee, B.B.; Kremers, Jan (2012)
    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic-achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.
    Thumbnail

    Specialized and independent processing of orientation and shape in visual field maps LO1 and LO2

    Silson, E.H.; McKeefry, Declan J.; Rodgers, J.; Gouws, A.D.; Hymers, M.; Morland, A.B. (2013)
    We identified human visual field maps, LO1 and LO2, in object-selective lateral occipital cortex. Using transcranial magnetic stimulation (TMS), we assessed the functions of these maps in the perception of orientation and shape. TMS of LO1 disrupted orientation, but not shape, discrimination, whereas TMS of LO2 disrupted shape, but not orientation, discrimination. This double dissociation suggests that specialized and independent processing of different visual attributes occurs in LO1 and LO2.
    Thumbnail

    Zinc oxide nanoparticles affect the expression of p53, Ras p21 and JNKs: an ex vivo/in vitro exposure study in respiratory disease patients

    Kumar, A.; Najafzadeh, Mojgan; Jacob, B.K.; Dhawan, A.; Anderson, Diana (2015)
    Zinc oxide (ZnO) nanoparticles are the mostly used engineered metal oxide nanoparticles in consumer products. This has increased the likelihood of human exposure to this engineered nanoparticle (ENPs) through different routes. At present, the majority of the studies concerning ZnO ENPs toxicity have been conducted using in vitro and in vivo systems. In this study, for the first time we assessed the effect of ZnO ENPs on the major cellular pathways in the lymphocytes of healthy individuals as well as in susceptible patients suffering from lung cancer, chronic obstructive pulmonary disease (COPD) and asthma. Using the differential expression analysis, we observed a significant (P < 0.05) dose-dependent (10, 20 and 40 microg/ml for 6h) increase in the expression of tumour suppressor protein p53 (40, 60 and 110%); Ras p21 (30, 52 and 80%); c-Jun N-terminal kinases; JNKs) (28, 47 and 78%) in lung cancer patient samples treated with ZnO ENPs compared to healthy controls. A similar trend was also seen in COPD patient samples where a significant (P < 0.05) dose-dependent increase in the expression of tumour suppressor protein p53 (26, 45 and 84%), Ras p21 (21, 40 and 77%), JNKs (17, 32 and 69%) was observed after 6h of ZnO ENPs treatment at the aforesaid concentrations. However, the increase in the expression profile of tested protein was not significant in the asthma patients as compared to controls. Our results reiterate the concern about the safety of ZnO ENPs in consumer products and suggest the need for a complete risk assessment of any new ENPs before its use.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.