BRADFORD SCHOLARS

    • Sign in
    Search 
    •   Bradford Scholars
    • Life Sciences
    • Search
    •   Bradford Scholars
    • Life Sciences
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CommunityAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    Filter by Category

    AuthorAttia, A.A.A. (1)Barry, Nicolas P.E. (1)Ellingford, C. (1)Lupan, A. (1)
    Pitto-Barry, Anaïs (1)
    Subject
    Carbon monoxide capture (1)
    Carbon monoxide release (1)
    Electron-deficient complexes (1)
    Organometallic chemistry (1)PDMS networks (1)View MoreDate Issued2018 (1)

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    New class of hybrid materials for detection, capture, and "on-demand" release of carbon monoxide

    Pitto-Barry, Anaïs; Lupan, A.; Ellingford, C.; Attia, A.A.A.; Barry, Nicolas P.E. (2018-04)
    Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N2) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the “on-demand” release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.