• Trichohyalin is a potential major autoantigen in human alopecia areata

      Leung, Man Ching; Sutton, Chris W.; Fenton, D.A.; Tobin, Desmond J. (2010)
      Several lines of evidence support an autoimmune basis for alopecia areata (AA), a common putative autoimmune hair loss disorder. However, definitive support is lacking largely because the identity of hair follicle (HF) autoantigen(s) involved in its pathogenesis remains unknown. Here, we isolated AA-reactive HF-specific antigens from normal human scalp anagen HF extracts by immunoprecipitation using serum antibodies from 10 AA patients. Samples were analyzed by LC-MALDI-TOF/TOF mass spectrometry, which indicated strong reactivity to the hair growth phase-specific structural protein trichohyalin in all AA sera. Keratin 16 (K16) was also identified as another potential AA-relevant target HF antigen. Double immunofluorescence studies using AA (and control sera) together with a monoclonal antibody to trichohyalin revealed that AA sera contained immunoreactivity that colocalized with trichohyalin in the growth phase-specific inner root sheath of HF. Furthermore, a partial colocalization of AA serum reactivity with anti-K16 antibody was observed in the outer root sheath of the HF. In summary, this study supports the involvement of an immune response to anagen-specific HFs antigens in AA and specifically suggests that an immune response to trichohyalin and K16 may have a role in the pathogenesis of the enigmatic disorder.
    • Tristearin bilayers: structure of the aqueous interface and stability in the presence of surfactants

      Hughes, Zak E.; Walsh, T.R. (2015-05-29)
      We report results of atomistic molecular dynamics simulations of an industrially-relevant, exemplar triacylglycerol (TAG), namely tristearin (TS), under aqueous conditions, at different temperatures and in the presence of an anionic surfactant, sodium dodecylbenzene sulphonate (SDBS). We predict the TS bilayers to be stable and in a gel phase at temperatures of 350 K and below. At 370 K the lipid bilayer was able to melt, but does not feature a stable liquid–crystalline phase bilayer at this elevated temperature. We also predict the structural characteristics of TS bilayers in the presence of SDBS molecules under aqueous conditions, where surfactant molecules are found to spontaneously insert into the TS bilayers. We model TS bilayers containing different amounts of SDBS, with the presence of SDBS imparting only a moderate effect on the structure of the system. Our study represents the first step in applying atomistic molecular dynamics simulations to the investigation of TAG-aqueous interfaces. Our results suggest that the CHARMM36 force-field appears suitable for the simulation of such systems, although the phase behaviour of the system may be shifted to lower temperatures than is the case for the actual system. Our findings provide a foundation for further simulation studies of the TS-aqueous interface.
    • TRPA1- FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p

      Berrout, J.; Kyriakopoulou, E.; Moparthi, L.; Hogea, A.S.; Berrout, L.; Ivan, C.; Lorger, M.; Boyle, J.; Peers, C.; Muench, S.; et al. (2017-10)
      Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD) where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline rich motif. Here, we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2 hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.
    • Truncated azinomycin analogues intercalate into DNA.

      Casely-Hayford, M.A.; Pors, Klaus; Patterson, Laurence H.; Gerner, C.; Neidle, S.; Searcey, M. (2005)
      The design and synthesis of a potentially more therapeutically-viable azinomycin analogue 4 based upon 3 has been completed. It involved coupling of a piperidine mustard to the acid chloride of the azinomycin chromophore. Both the designed azinomycin analogue 4 and the natural product 3 bind to DNA and cause unwinding, supporting an intercalative mode of binding. Graphical abstract A designed analogue of the left half of azinomycin has been synthesized and unwinds supercoiled DNA.
    • Tuberculosis resistance-conferring mutations with fitness cost among HIV-positive individuals in Uganda

      Ssengooba, W.; Lukoye, D.; Meehan, Conor J.; Kateete, D.P.; Joloba, M.L.; de Jong, B.C.; Cobelens, F.G.; van Leth, F. (2017-05-01)
      BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB) is considered to be less transmissible due to the fitness cost associated with drug resistance-conferring mutations in essential genes. OBJECTIVE: To test the hypothesis that TB drug resistance-conferring mutations with fitness cost are more frequent among human immunodeficiency virus (HIV) positive than among HIV-negative patients. DESIGN: We analysed all strains from the two TB drug resistance surveys conducted in Uganda between 2008 and 2011. Strains phenotypically susceptible to rifampicin and/or isoniazid were assumed to be wild-type; in all other cases, we performed whole-genome sequencing. Mutations at the rpoB531 and katG315 codons were considered without fitness loss, whereas other rpoB codons and non-katG were considered with fitness loss. RESULTS: Of the 897 TB patients, 286 (32.1%) were HIV-positive. Mutations with fitness loss in HIV-positive and HIV-negative patients were respectively as follows: non-531 rpoB: 1.03% (n = 3), 0.71% (n = 4) (OR 1.46, 95%CI 0.58-3.68); non-katG: 0.40% (n = 1), 1.0% (n = 6) (OR 0.40, 95%CI 0.07-2.20); rpoB531: 1.49% (n = 4), 0.69% (n = 4) (OR 2.29, 95%CI 0.83-5.77); katG315: 3.86% (n = 11), 2.55% (n = 15) (OR 1.54, 95%CI 0.81-2.90). The odds of mutations with and without fitness cost were higher for patients with a history of previous anti-tuberculosis treatment. CONCLUSIONS: Our data do not support the hypothesis that resistance-conferring mutations with fitness cost are likely to be often present in HIV-positive individuals.
    • Tubulin-binding dibenz[c,e]oxepines. Part 2. 1 Structural variation and biological evaluation as tumour vasculature disrupting agents

      Rossington, S.B.; Hadfield, J.A.; Shnyder, Steven D.; Wallace, T.W.; Williams, K.J. (2017-03-01)
      5,7-Dihydro-3,9,10,11-tetramethoxybenz[c,e]oxepin-4-ol 1, prepared from a dibenzyl ether precursor via Pd-catalysed intramolecular direct arylation, possesses broad-spectrum in vitro cytotoxicity towards various tumour cell lines, and induces vascular shutdown, necrosis and growth delay in tumour xenografts in mice at sub-toxic doses. The biological properties of 1 and related compounds can be attributed to their ability to inhibit microtubule assembly at the micromolar level, by binding reversibly to the same site of the tubulin αβ-heterodimer as colchicine 2 and the allocolchinol, N-acetylcolchinol 4.
    • Tumor growth suppression using a combination of taxol-based therapy and GSK3 inhibition in non-small cell lung cancer

      O'Flaherty, L.; Shnyder, Steven D.; Cooper, Patricia A.; Cross, S.J.; Wakefield, J.G.; Pardo, O.E.; Seckl, M.J.; Tavare, J.M. (2019-04-10)
      Glycogen synthase kinase-3 (GSK3) is over-expressed and hyperactivated in non-small cell lung carcinoma (NSCLC) and plays a role in ensuring the correct alignment of chromosomes on the metaphase plate during mitosis through regulation of microtubule stability. This makes the enzyme an attractive target for cancer therapy. We examined the effects of a selective cell-permeant GSK3 inhibitor (CHIR99021), used alone or in combination with paclitaxel, using an in vitro cell growth assay, a quantitative chromosome alignment assay, and a tumor xenograft model. CHIR99021 inhibits the growth of human H1975 and H1299 NSCLC cell lines in a synergistic manner with paclitaxel. CHIR99021 and paclitaxel promoted a synergistic defect in chromosomal alignment when compared to each compound administered as monotherapy. Furthermore, we corroborated our in vitro findings in a mouse tumor xenograft model. Our results demonstrate that a GSK3 inhibitor and paclitaxel act synergistically to inhibit the growth of NSCLC cells in vitro and in vivo via a mechanism that may involve converging modes of action on microtubule spindle stability and thus chromosomal alignment during metaphase. Our findings provide novel support for the use of the GSK3 inhibitor, CHIR99021, alongside taxol-based chemotherapy in the treatment of human lung cancer.
    • Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium

      Reid, SE; Kay, EJ; Neilson, LJ; Henze, AT; Serneels, J; McGhee, EJ; Dhayade, S; Nixon, C; Mackey, JB; Santi, A; et al. (2017-08-15)
      Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.
    • Tumor-Targeted Prodrug ICT2588 Demonstrates Therapeutic Activity Against Solid Tumors and Reduced Potential For Cardiovascular Toxicity

      Gill, Jason H.; Loadman, Paul M.; Shnyder, Steven D.; Cooper, Patricia A.; Atkinson, Jennifer M.; Ribeiro Morais, Goreti; Patterson, Laurence H.; Falconer, Robert A. (2014-03-18)
      Development of therapeutic strategies for tumor-selective delivery of therapeutics through exploitation of the proteolytic tumor phenotype has significant scope for improvement of cancer treatment. ICT2588 is a peptide-conjugated prodrug of the vascular disrupting agent (VDA) azademethylcolchicine developed to be selectively hydrolyzed by matrix metalloproteinase-14 (MMP-14) within the tumor. In this report, we extend our previous proof-of-concept studies and demonstrate the therapeutic potential of this agent against models of human colorectal, lung, breast, and prostate cancer. In all tumor types, ICT2588 was superior to azademethylcolchicine and was greater or comparable to standard clinically used agents for the respective tumor type. Prodrug activation in clinical human lung tumor homogenates relative to stability in human plasma and liver was observed, supporting clinical translation potential. A major limiting factor to the clinical value of VDAs is their inherent cardiovascular toxicity. No increase in plasma von Willebrand factor (vWF) levels, an indicator of systemic vascular dysfunction and acute cardiovascular toxicity, was detected with ICT2588, thereby supporting the tumor-selective activation and reduced potential of ICT2588 to cause cardiovascular toxicity. Our findings reinforce the improved therapeutic index and tumorselective approach offered by ICT2588 and this nanotherapeutic approach.
    • Tumour necrosis factor alpha induces rapid reduction in AMPA receptor-mediated calcium entry in motor neurones by increasing cell surface expression of the GluR2 subunit: relevance to neurodegeneration

      Rainey-Smith, S.R.; Andersson, D.A.; Williams, R.J.; Rattray, Marcus (2010)
      The alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNFalpha) have both been implicated in motor neurone vulnerability in amyotrophic lateral sclerosis/motor neurone disease. TNFalpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNFalpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/mL, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using fura-2-acetoxymethyl ester microfluorimetry, we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggest that TNFalpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in amyotrophic lateral sclerosis.
    • Tunable supramolecular gel properties by varying thermal history

      Debnath, S.; Roy, S.; Abul-Haija, Y.M.; Frederix, P.W.J.M.; Ramalhete, S.M.; Hirst, A.R.; Javid, Nadeem; Hunt, N.T.; Kelly, S.M.; Angulo, J.; et al. (2019-06-12)
      The possibility of using differential pre‐heating prior to supramolecular gelation to control the balance between hydrogen‐bonding and aromatic stacking interactions in supramolecular gels and obtain consequent systematic regulation of structure and properties is demonstrated. Using a model aromatic peptide amphiphile, Fmoc‐tyrosyl‐leucine (Fmoc‐YL) and a combination of fluorescence, infrared, circular dichroism and NMR spectroscopy, it is shown that the balance of these interactions can be adjusted by temporary exposure to elevated temperatures in the range 313–365 K, followed by supramolecular locking in the gel state by cooling to room temperature. Distinct regimes can be identified regarding the balance between H‐bonding and aromatic stacking interactions, with a transition point at 333 K. Consequently, gels can be obtained with customizable properties, including supramolecular chirality and gel stiffness. The differential supramolecular structures also result in changes in proteolytic stability, highlighting the possibility of obtaining a range of supramolecular architectures from a single molecular structure by simply controlling the pre‐assembly temperature.
    • Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures

      Alakpa, E.V.; Jayawarna, V.; Lampel, A.; Burgess, K.V.; West, C.C.; Bakker, S.C.J.; Roy, S.; Javid, Nadeem; Fleming, S.; Lamprou, D.A.; et al. (2016-08-11)
      Stem cells are known to differentiate in response to the chemical and mechanical properties of the substrates on which they are cultured. Thus, supramolecular biomaterials with tunable properties are well suited for the study of stem cell differentiation. In this report, we exploited this phenomenon by combining stem cell differentiation in hydrogels with variable stiffness and metabolomics analysis to identify specific bioactive lipids that are uniquely used up during differentiation. To achieve this, we cultured perivascular stem cells on supramolecular peptide gels of different stiffness, and metabolite depletion followed. On soft (1 kPa), stiff (13 kPa), and rigid (32 kPa) gels, we observed neuronal, chondrogenic, and osteogenic differentiation, respectively, showing that these stem cells undergo stiffness-directed fate selection. By analyzing concentration variances of >600 metabolites during differentiation on the stiff and rigid gels (and focusing on chondrogenesis and osteogenesis as regenerative targets, respectively), we identified that specific lipids (lysophosphatidic acid and cholesterol sulfate, respectively), were significantly depleted. We propose that these metabolites are therefore involved in the differentiation process. In order to unequivocally demonstrate that the lipid metabolites that we identified play key roles in driving differentiation, we subsequently demonstrated that these individual lipids can, when fed to standard stem cell cultures, induce differentiation toward chondrocyte and osteoblast phenotypes. Our concept exploits the design of supramolecular biomaterials as a strategy for discovering cell-directing bioactive metabolites of therapeutic relevance.
    • Tuning proton behavior in a ternary molecular complex.

      Thomas, L.H.; Blagden, Nicholas; Gutmann, M.J.; Kallay, A.A.; Parkin, A.; Seaton, Colin C.; Wilson, C.C. (2010-06)
      The multicomponent ternary complex of 4-dimethylaminobenzoic acid (4-DABA), 3,5-dinitrobenzoic acid (3,5-DNBA), and 4,40-bipyridine (BIPY) has been studied by variable temperature X-ray and neutron diffraction. Proton disorder is observed within the 4-DABA homodimers present and quantitatively evaluated from neutron data. The effect of the crystal environment and in particular the pyramidalization of the nitrogen atom within the 4-DABA molecule and the consequential effect on the presence of hydrogen atom disorder are discussed with reference to the previously determined pure 4-DABA structure and the binary cocrystal with 3,5-DNBA.
    • Tuning the aggregation behavior of pH-responsive micelles by copolymerization

      Wright, D.B.; Patterson, J.P.; Pitto-Barry, Anaïs; Cotenda, P.; Chassenieux, C.; Colombani, O.; O'Reilly, R.K. (2015-04-14)
      Amphiphilic diblock copolymers, poly(2-(diethylamino)ethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate), P(DEAEMA-co-DMAEMA)-b-PDMAEMA with various amounts of DEAEMA have been synthesized by RAFT polymerization. Their micellization in water has been investigated by scattering measurements over a wide pH range. It appeared that the polymers self-assembled into pH sensitive star like micelles. For a given composition, when the pH is varied the extent of aggregation can be tuned reversibly by orders of magnitude. By varying the copolymer composition in the hydrophobic block, the onset and extent of aggregation were shifted with respect to pH. This class of diblock copolymer offers the possibility to select the range of stimuli-responsiveness that is useful for a given application, which can rarely be achieved with conventional diblock copolymers consisting of homopolymeric blocks.
    • Two Heterometallic Ionic Compounds with Isolated [3d] and [4f] Complex Units: Field-Induced Single-Ion Magnet (SIM) Behavior Observed from a Mononuclear Dysprosium(III) Complex

      Nayak, Sanjit; Novitchi, G.; Holynska, M.; Dehnen, S. (2014-09)
      This article corrects http://onlinelibrary.wiley.com/enhanced/doi/10.1002/ejic.201402114. 2014(19): 3065-3071.
    • Two Heterometallic Ionic Compounds with Isolated [3d] and [4f] Complex Units: Field-Induced Single-Ion Magnet (SIM) Behavior Observed from a Mononuclear Dysprosium(III) Complex

      Nayak, Sanjit; Novitchi, G.; Holynska, M.; Dehnen, S. (2014-07)
      Two new complexes, [Fe3(μ3-O)(inicH)6(H2O)3][Gd(NO3)6]·(NO3)4·nH2O (1) and [Fe3(μ3-O)(inicH)6(H2O)3][Dy(NO3)5 (H2O)]·(NO3)5·n(H2O) (2) with two isolated complex moieties, were generated when isonicotinic acid was treated with iron(III) nitrate and the corresponding lanthanide(III) nitrate in water. The structures were determined by single-crystal X-ray diffraction studies. In these compounds, the anionic lanthanide complexes are encapsulated by trinuclear [Fe3(μ3-O)(inicH)6(H2O)3]7+ cationic cluster units, which is facilitated by hydrogen-bonding interactions. Investigation of the magnetic properties reveals that 2 shows slow relaxation of magnetization at low magnetic field (Hdc = 1.0 kOe), with an energy barrier of 23 K originating from a single [Dy(NO3)5(H2O)]2– anion.
    • Two plasmid-encoded genes of enteropathogenic Escherichia coli strain K798 promote invasion and survival within HEp-2 cells

      Burska, Urszula L.; Fletcher, Jonathan N. (2014)
      Enteropathogenic Escherichia coli (EPEC) are considered to be extracellular pathogens, inducing attaching and effacing lesions following their attachment to the surface of eukaryotic cells; however, in vitro and in vivo invasion by EPEC has been reported in several studies. A cloned 4.6 kb fragment of EPEC plasmid pLV501 has been shown to facilitate invasion of E. coli K-12, and here we further investigate the nature of this process. Two of the three complete open reading frames contained within the plasmid fragment have been cloned to E. coli, and in HEp-2 adherence assays both tniA2 and pecM were shown to be expressed during the first 3 h of infection from a plac promoter. Escherichia coli transformants carrying pecM alone or in combination with tniA2 were able to both survive intracellularly and escape eukaryotic cells to re-establish themselves within the medium, whereas those bacterial cells carrying tniA2 alone could not be isolated from within HEp-2 cells after 24 h of infection, but were present in the previously sterile medium surrounding the cells. Bacteria carrying pecM and tniA2 adhered to HEp-2 cells with sites of adhesion characterized by underlying actin polymerization. The invasive potential conferred by these genes may give EPEC strains a survival advantage during prolonged infection.
    • Two-way effects of surfactants on Pickering emulsions stabilized by the self-assembled microcrystals of alpha-cyclodextrin and oil

      Li, X.; Li, H.; Xiao, Q.; Wang, L.; Wang, M.; Lu, X.; York, Peter; Shi, S.; Zhang, J. (2014)
      The influence of surfactants on the stability of cyclodextrin (CD) Pickering emulsions is not well understood. In this study, we report two-way effects of Tween 80 and soybean lecithin (PL) on the long term stability of Pickering emulsions stabilized by the self-assembled microcrystals of alpha-CD and medium chain triglycerides (MCT). The CD emulsions in the absence and presence of Tween 80 or PL at different concentrations were prepared and characterized by the droplet size, viscosity, contact angle, interfacial tension and residual emulsion values. After adding Tween 80 and PL, similar effects on the size distribution and contact angle were observed. However, changes of viscosity and interfacial tension were significantly different and two-way effects on the stability were found: (i) synergistic enhancement by Tween 80; (ii) inhibition at low and enhancement at high concentrations by PL. The stability enhancement of Tween 80 was due to the interfacial tension decrease caused by the interaction of Tween 80 with CD at the o/w interface at lower concentrations, and significant viscosity increase caused by the Tween 80-CD assembly in the continuous phase. For PL at low concentrations, the replacement of alpha-CD/MCT by alpha-CD/PL particles at the o/w interface was observed, leading to inhibitory effects. High concentrations of PL resulted in an extremely low interfacial tension and stable emulsion. In conclusion, the extensive inclusion of surfactants by CD leads to their unique effects on the stability of CD emulsions, for which the changes of viscosity and interfacial tension caused by host-guest interactions play important roles.
    • Type 2 diabetes impairs venous, but not arterial smooth muscle cell function: possible role of differential RhoA activity

      Riches-Suman, Kirsten; Warburton, P.; O'Regan, D.J.; Turner, N.A.; Porter, K.E. (2014-04)
      Background/purpose Coronary heart disease is the leading cause of morbidity in patients with type 2 diabetes mellitus (T2DM), frequently resulting in a requirement for coronary revascularization using the internal mammary artery (IMA) or saphenous vein (SV). Patency rates of SV grafts are inferior to IMA and further impaired by T2DM whilst IMA patencies appear similar in both populations. Smooth muscle cells (SMC) play a pivotal role in graft integration; we therefore examined the phenotype and proliferative function of IMA- and SV-SMC isolated from non-diabetic (ND) patients or those diagnosed with T2DM. Methods/materials SMC were cultured from fragments of SV or IMA. Morphology was analyzed under light microscopy (spread cell area measurements) and confocal microscopy (F-actin staining). Proliferation was analyzed by cell counting. Levels of RhoA mRNA, protein and activity were measured by real-time RT-PCR, western blotting and G-LISA respectively. Results IMA-SMC from T2DM and ND patients were indistinguishable in both morphology and function. By comparison, SV-SMC from T2DM patients exhibited significantly larger spread cell areas (1.5-fold increase, P < 0.05), truncated F-actin fibers and reduced proliferation (33% reduction, P < 0.05). Furthermore, lower expression and activity of RhoA were observed in SV-SMC of T2DM patients (37% reduction in expression, P < 0.05 and 43% reduction in activity, P < 0.01). Conclusions IMA-SMC appear impervious to phenotypic modulation by T2DM. In contrast, SV-SMC from T2DM patients exhibit phenotypic and functional changes accompanied by reduced RhoA activity. These aberrancies may be epigenetic in nature, compromising SMC plasticity and SV graft adaptation in T2DM patients.
    • Type-I and Type-II Core-Shell Quantum Dots: Synthesis and Characterization

      Dorfs, D.; Hickey, Stephen G.; Eychmüller, A. (2010-02)