• RAFT dispersion polymerization : a method to tune the morphology of thymine-containing self-assemblies

      Kang, Y.; Pitto-Barry, Anaïs; Maitland, A.; O'Reilly, R.K. (2015-07-21)
      The synthesis and self-assembly of thymine-containing polymers were performed using RAFT dispersion polymerization. A combination of microscopy and scattering techniques was used to analyze the resultant complex morphologies. The primary observation from this study is that the obtained aggregates induced during the polymerization were well-defined despite the constituent copolymers possessing broad dispersities. Moreover, a variety of parameters, including the choice of polymerization solvent, the degree of polymerization of both blocks and the presence of an adenine-containing mediator, were observed to affect the resultant size and shape of the assembly.
    • Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway

      Jorge Villar, Susana E.; Benning, L.G.; Edwards, Howell G.M.; AMASE team (2007)
      A profile across 8 layers from a fossil travertine terrace from a low temperature geothermal spring located in Svalbard, Norway has been studied using both Raman spectroscopy and SEM (Scanning Electron Microscopy) techniques to identify minerals and organic life signals. Calcite, anatase, quartz, haematite, magnetite and graphite as well as scytonemin, three different carotenoids, chlorophyll and a chlorophyll-like compound were identified as geo- and biosignatures respectively, using 785 and/or 514 nm Raman laser excitation wavelengths. No morphological biosignatures representing remnant microbial signals were detected by high-resolution imaging, although spectral analyses indicated the presence of organics. In contrast, in all layers, Raman spectra identified a series of different organic pigments indicating little to no degradation or change of the organic signatures and thus indicating the preservation of fossil biomarker compounds throughout the life time of the springs despite the lack of remnant morphological indicators. With a view towards planetary exploration we discuss the implications of the differences in Raman band intensities observed when spectra were collected with the different laser excitations. We show that these differences, as well as the different detection capability of the 785 and 514 nm laser, could lead to ambiguous compound identification. We show that the identification of bio and geosignatures, as well as fossil organic pigments, using Raman spectroscopy is possible. These results are relevant since both lasers have been considered for miniaturized Raman spectrometers for planetary exploration.
    • Raman spectroscopic analyses of preserved historical specimens of human hair attributed to Robert Stephenson and Sir Isaac Newton

      Edwards, Howell G.M.; Hassan, N.F.; Wilson, Andrew S. (2004)
      The Raman spectra of two historical specimens of human hair attributed to the engineer Robert Stephenson and scientist Sir Isaac Newton, preserved in private collections are reported. Comparisons are made with the Raman spectra of modern hair specimens and with hair from archaeological excavations. The hair spectra collected with a laser excitation of 785 nm are of a better quality than those collected using 1064 nm. The historical hair specimens are remarkably well-defined spectroscopically in terms of the amide I vibrational mode and the ν(SS), ascribed to a predominantly gauche–gauche–gauche CSSC conformation. The contrast with degraded hair specimens recovered from archaeological excavations is striking. The presence of a weak feature near 2590 cm−1 in the hair samples attributed to a ν(SH) vibration could be indicative of a reduction process operative on the CSSC cystine keratotic linkages and a possible origin of this is bacterial biodegradation identified histologically. This study demonstrates the molecular information available from non-destructive Raman spectroscopic analysis from single hair shafts or small bundles of fibres which complements information available from histological and destructive analytical techniques for rare biological specimens subjected to conservation or curation procedures in museums or private collections.
    • Raman spectroscopic analysis of human remains from a seventh century cist burial on Anglesey, UK

      Edwards, Howell G.M.; Wilson, Andrew S.; Nik Hassan, N.F.; Davidson, A.; Burnett, A. (2006-02)
      Specimens from human remains exhibiting unusual preservation excavated from a seventh century stone cist burial at Towyn y Capel in Anglesey, UK, have been analysed using Raman spectroscopy with near-infrared laser excitation at 1,064 and 785 nm. Specimens of hair and bone provided evidence for severe degradation and microbial colonisation. The deposits within the stone cist showed that some microbially mediated compounds had been formed. Analysis of crystals found at the interface between the hair and the skeletal neck vertebrae revealed a mixture of newberyite and haematite, associated with decomposition products of the hair and bone. An interesting differential degradation was noted in the specimens analysed which could be related to the air-void and the presence of plant root inclusions into the stone cist. This is the first time that Raman spectroscopy has been used in the forensic archaeological evaluation of burial remains in complex and dynamic environments.
    • Raman spectroscopic analysis of the effect of the lichenicolous fungus Xanthoriicola physciae on its lichen host

      Edwards, Howell G.M.; Seaward, Mark R.D.; Preece, T.F.; Jorge Villar, Susana E.; Hawksworth, D.L. (2016)
      Lichenicolous (lichen-dwelling) fungi have been extensively researched taxonomically over many years, and phylogenetically in recent years, but the biology of the relationship between the invading fungus and the lichen host has received limited attention, as has the effects on the chemistry of the host, being difficult to examine in situ. Raman spectroscopy is an established method for the characterization of chemicals in situ, and this technique is applied to a lichenicolous fungus here for the first time. Xanthoriicola physciae occurs in the apothecia of Xanthoria parietina, producing conidia at the hymenium surface. Raman spectroscopy of apothecial sections revealed that parietin and carotenoids were destroyed in infected apothecia. Those compounds protect healthy tissues of the lichen from extreme insolation and their removal may contribute to the deterioration of the apothecia. Scytonemin was also detected, but was most probably derived from associated cyanobacteria. This work shows that Raman spectroscopy has potential for investigating changes in the chemistry of a lichen by an invading lichenicolous fungus.
    • Raman spectroscopic and structural investigation of 1,4-diphenylbuta-1,3-diene and selected monomethyl and dimethyl substituted homologues

      Bowen, Richard D.; Edwards, Howell G.M.; Waller, Zoe A.E. (2006)
      The Raman and mass spectra of 1,4-diphenylbuta-1,3-diene and several of its monomethyl and dimethyl homologues are reported and discussed, with a view to developing a spectroscopic protocol for detecting the presence and position of a methyl group in these compounds. Raman spectroscopy and mass spectrometry are shown to provide complementary information, by which the four available monomethyl homologues may be readily distinguished from each other and 1,4-diphenylbuta-1,3-diene itself. The utility of these 1,4-diarylbutadienes as model compounds for carotenoids and related materials, which may serve as indicators of extinct or extant extraterrestrial life, is considered.
    • Raman Spectroscopic and structural studies of indigo and its four 6,6'-Dihalogeno analogues

      Bowen, Richard D.; Edwards, Howell G.M.; Jorge Villar, Susana E.; Karapanayiotis, Thanassis (2004)
      The Raman and electron impact mass spectra of synthetic indigo and its four 6,6'-dihalogeno analogues are reported and discussed. The influence of varying the halogen on these Raman spectra is considered. Particular emphasis is laid on distinguishing indigo from 6,6'-dibromoindigo and differentiating between the dihalogenocompounds, so as to develop protocols for determining whether artefacts are coloured with dyes of marine or terrestrial origin and whether such artefacts are dyed with genuine Tyrian Purple or with dihalogenoindigo substitutes that do not contain bromine. The value of even low resolution electron impact mass spectrometry in a forensic context as a means of identifying authentic 6,6'-dibromoindigo and distinguishing it from its dihalogenoanalogues is emphasised.
    • Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

      Edwards, Howell G.M.; Munshi, Tasnim; Anstis, M. (2005)
      The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.
    • Raman spectroscopic fingerprints of scytonemin-imine: density functional theory calculations of a novel potential biomarker

      Varnali, T.; Edwards, Howell G.M. (2014-12-13)
      Scytonemin-imine, a novel derivative of scytonemin, has been isolated and identified very recently and proposed to serve as a photoprotective biomarker for certain bacteria growing under intense photon flux density. This study predicts theoretically the Raman spectrum of scytonemin-imine by density functional theory calculations and provides comparison of major bands to those of scytonemin, the parent compound for which both the experimentally characterized and theoretically predicted spectra exist in the literature. It is proposed to be an addendum to the collection of our previous work on scytonamin and its derivatives to facilitate recognition of the diagnostic Raman spectral signatures for scytonemin-imine.
    • Raman spectroscopic identification of scytonemin and its derivatives as key biomarkers in stressed environments

      Varnali, T.; Edwards, Howell G.M. (2014-12-13)
      Raman spectroscopy has been identified as an important first-pass analytical technique for deployment on planetary surfaces as part of a suite of instrumentation in projected remote space exploration missions to detect extant or extinct extraterrestrial life signatures. Aside from the demonstrable advantages of a non-destructive sampling procedure and an ability to record simultaneously the molecular signatures of biological, geobiological and geological components in admixture in the geological record, the interrogation and subsequent interpretation of spectroscopic data from these experiments will be critically dependent upon the recognition of key biomolecular markers indicative of life existing or having once existed in extreme habitats. A comparison made with the characteristic Raman spectral wavenumbers obtained from standards is not acceptable because of shifts that can occur in the presence of other biomolecules and their host mineral matrices. In this paper, we identify the major sources of difficulty experienced in the interpretation of spectroscopic data centring on a key family of biomarker molecules, namely scytonemin and its derivatives; the parent scytonemin has been characterized spectroscopically in cyanobacterial colonies inhabiting some of the most extreme terrestrial environments and, with the support of theoretical calculations, spectra have been predicted for the characterization of several of its derivatives which could occur in novel extraterrestrial environments. This work will form the foundation for the identification of novel biomarkers and for their Raman spectroscopic discrimination, an essential step in the interpretation of potentially complex and hitherto unknown biological radiation protectants based on the scytoneman and scytonin molecular skeletons which may exist in niche geological scenarios in the surface and subsurface of planets and their satellites in our Solar System.
    • Raman spectroscopic study of "The Malatesta": a Renaissance painting?

      Edwards, Howell G.M.; Vandenabeele, P.; Benoy, T.J. (2015-02-25)
      Raman spectroscopic analysis of the pigments on an Italian painting described as a “Full Length Portrait of a Gentleman”, known also as the “Malatesta”, and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.
    • Raman spectroscopic study of antioxidant pigments from cup corals Tubastraea spp

      Maia, L.F.; Ferreira, G.R.; Costa, R.C.; Lucas, N.C.; Teixeira, R.I.; Fleury, B.G.; Edwards, Howell G.M.; de Oliveira, L.F.C. (2014)
      Chemical investigation of nonindigenous Tubastraea coccinea and T. tagusensis by Raman spectroscopy resulted in the identification of carotenoids and indolic alkaloids. Comparison of Raman data obtained for the in situ and crude extracts has shown the potential of the technique for characterizing samples which are metabolic fingerprints, by means of band analysis. Raman bands at ca. 1520, 1160, and 1005 cm–1 assigned to ν1(C═C), ν2(C—C), and ρ3(C—CH3) modes were attributed to astaxanthin, and the band at 1665 cm–1 could be assigned to the ν(C—N), ν(C—O), and ν(C—C) coupled mode of the iminoimidazolinone from aplysinopsin. The antioxidant activity of the crude extracts has also been demonstrated, suggesting a possible role of these classes of compounds in the studied corals.
    • Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations

      Jehlička, J.; Edwards, Howell G.M.; Nemec, I.; Oren, A. (2015)
      Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here.
    • Raman spectroscopy as a non-destructive screening technique for studying white substances from archaeological and forensic burial contexts

      Schotsmans, Eline M.J.; Wilson, Andrew S.; Brettell, Rhea C.; Munshi, Tasnim; Edwards, Howell G.M. (2014)
      Raman spectroscopy was evaluated as a non-destructive analytical tool for the characterisation of white substances in burials. In addition, Fourier transform Raman spectroscopy was used to assess the conversion of hydrated lime into calcium carbonate. Fourteen samples of white substances from archaeological and forensic sites were analysed and characterised. The results show that not all white residues in burials are lime. Lime can easily be mistaken for other building materials (gypsum), for minerals (brushite) or degraded metal (cerussite). This study highlights the need for chemical analysis of white residues when encountered in burials. Analytical information derived from Raman spectra of white substances can further assist in the interpretation of the taphonomic processes of burials and their funerary context. Copyright (c) 2014 John Wiley & Sons, Ltd.
    • Raman spectroscopy meets extremophiles on Earth and Mars: studies for successful search of life

      Jehlička, J.; Edwards, Howell G.M. (2014)
      Recent studies relating to the analytical chemical characterization of terrestrial extremophiles reveal the presence of biomolecules that have been synthesized for the survival of the colonies in response to the extreme environmental conditions, where otherwise life could not exist. This is a vital part of the planned space missions now being undertaken to planets and their satellites in the search for extinct or extant life signatures in our Solar System. Extremophiles have existed on the Earth for some 3.8 Gyr and their interrogation indicates their strategic survival methods which can be associated and compared with extraterrestrial scenarios on Mars, Titan, Enceladus and Europa.
    • Raman spectroscopy of microbial pigments

      Jehlička, J.; Edwards, Howell G.M.; Oren, A. (2014)
      Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions.
    • Raman spectroscopy on Mars: identification of geological and bio-geological signatures in Martian analogues using miniaturized Raman spectrometers

      Hutchinson, I.B.; Ingley, R.; Edwards, Howell G.M.; Harris, L.V.; McHugh, M.; Malherbe, C.; Parnell, J. (2014)
      The first Raman spectrometers to be used for in situ analysis of planetary material will be launched as part of powerful, rover-based analytical laboratories within the next 6 years. There are a number of significant challenges associated with building spectrometers for space applications, including limited volume, power and mass budgets, the need to operate in harsh environments and the need to operate independently and intelligently for long periods of time (due to communication limitations). Here, we give an overview of the technical capabilities of the Raman instruments planned for future planetary missions and give a review of the preparatory work being pursued to ensure that such instruments are operated successfully and optimally. This includes analysis of extremophile samples containing pigments associated with biological processes, synthetic materials which incorporate biological material within a mineral matrix, planetary analogues containing low levels of reduced carbon and samples coated with desert varnish that incorporate both geo-markers and biomarkers. We discuss the scientific importance of each sample type and the challenges using portable/flight-prototype instrumentation. We also report on technical development work undertaken to enable the next generation of Raman instruments to reach higher levels of sensitivity and operational efficiency.
    • Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

      Matchett, K.B.; McFarlane, S.; Hamilton, S.E.; Eltuhamy, Y.S.A.; Davidson, M.A.; Murray, J.T.; Faheem, A.M.; El-Tanani, Mohamed (2014-01-24)
      Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
    • Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

      Yuen, H-F.; Chan, K.K.; Platt-Higgins, A.; Dakir, El-Habib; Matchett, K.B.; Haggag, Y.A.; Jithesh, P.V.; Habib, T.; Faheem, A.; Dean, F.A.; et al. (2016-10-03)
      It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reductionmediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a prerequisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator.
    • A randomised controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma (or polyp) prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme: The seAFOod (Systematic Evaluation of Aspirin and Fish Oil) Polyp Prevention Trial

      Hull, M.A.; Sandell, A.C.; Montgomery, A.A.; Logan, R.F.A.; Clifford, G.M.; Rees, C.J.; Loadman, Paul M.; Whitham, D. (2013-07-29)
      The naturally-occurring omega (ω)-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) reduces colorectal adenoma (polyp) number and size in patients with familial adenomatous polyposis. The safety profile and potential cardiovascular benefits associated with ω-3 PUFAs make EPA a strong candidate for colorectal cancer (CRC) chemoprevention, alone or in combination with aspirin, which itself has recognized anti-CRC activity. Colorectal adenoma number and size are recognized as biomarkers of future CRC risk and are established as surrogate end-points in CRC chemoprevention trials. The seAFOod Polyp Prevention Trial is a randomized, double-blind, placebo-controlled, 2 × 2 factorial ‘efficacy’ study, which will determine whether EPA prevents colorectal adenomas, either alone or in combination with aspirin. Participants are 55–73 year-old patients, who have been identified as ‘high risk’ (detection of ≥5 small adenomas or ≥3 adenomas with at least one being ≥10 mm in diameter) at screening colonoscopy in the English Bowel Cancer Screening Programme (BCSP). Exclusion criteria include the need for more than one repeat endoscopy within the three-month BCSP screening period, malignant change in an adenoma, regular use of aspirin or non-aspirin non-steroidal anti-inflammatory drugs, regular use of fish oil supplements and concomitant warfarin or anti-platelet agent therapy. Patients are randomized to either EPA-free fatty acid 1 g twice daily or identical placebo AND aspirin 300 mg once daily or identical placebo, for approximately 12 months. The primary end-point is the number of participants with one or more adenomas detected at routine one-year BCSP surveillance colonoscopy. Secondary end-points include the number of adenomas (total and ‘advanced’) per patient, the location (left versus right colon) of colorectal adenomas and the number of participants re-classified as ‘intermediate risk’ for future surveillance. Exploratory end-points include levels of bioactive lipid mediators such as ω-3 PUFAs, resolvin E1 and PGE-M in plasma, urine, erythrocytes and rectal mucosa in order to gain insights into the mechanism(s) of action of EPA and aspirin, alone and in combination, as well as to discover predictive biomarkers of chemopreventive efficacy. The recruitment target is 904 patients.