• Sensitivity to velocity- and disparity based cues to motion-in-depth with and without spared stereopsis in binocular visual impairment

      Maloney, R.T.; Kaestner, M.; Bruce, Alison; Bloj, Marina; Harris, J.M.; Wade, A.R. (2018-09)
      Purpose: Two binocular sources of information serve motion-in-depth (MID) perception: changes in disparity over time (CD), and interocular velocity differences (IOVD). While CD requires the computation of small spatial disparities, IOVD could be computed from a much lower-resolution signal. IOVD signals therefore might still be available under conditions of binocular vision impairment (BVI) with limited or no stereopsis, e.g. amblyopia. Methods: Sensitivity to CD and IOVD was measured in adults who had undergone therapy to correct optical misalignment or amblyopia in childhood (n=16), as well as normal vision controls with good stereoacuity (n=8). Observers discriminated the interval containing a smoothly-oscillating MID “test” stimulus from a “control” stimulus in a two-interval forced choice (2IFC) paradigm. Results: Of the BVI observers with no static stereoacuity (n=9), one displayed evidence for sensitivity to IOVD only, while there was otherwise no sensitivity for either CD or IOVD in the group. Generally, BVI observers with measurable stereoacuity (n=7) displayed a pattern resembling the control group: showing a similar sensitivity for both cues. A neutral-density (ND) filter placed in front of the fixing eye in a subset of BVI observers did not improve performance. Conclusions: In one BVI observer there was preserved sensitivity to IOVD but not CD, though overall only those BVI observers with at least gross stereopsis were able to detect disparity-based or velocity-based cues to MID. The results imply that these logically distinct information sources are somehow coupled, and in some cases BVI observers with no stereopsis may still retain sensitivity to IOVD.
    • Understanding the neural basis of amblyopia.

      Barrett, Brendan T.; Bradley, A.; McGraw, Paul V. (2004)
      Amblyopia is the condition in which reduced visual function exists despite full optical correction and an absence of observable ocular pathology. Investigation of the underlying neurology of this condition began in earnest around 40 years ago with the pioneering studies conducted by Hubel and Wiesel. Their early work on the impact of monocular deprivation and strabismus initiated what is now a rapidly developing field of cortical plasticity research. Although the monocular deprivation paradigm originated by Hubel and Wiesel remains a key experimental manipulation in studies of cortical plasticity, somewhat ironically, the neurology underlying the human conditions of strabismus and amblyopia that motivated this early work remains elusive. In this review, the authors combine contemporary research on plasticity and development with data from human and animal investigations of amblyopic populations to assess what is known and to reexamine some of the key assumptions about human amblyopia.