• Enamel Diagenesis at South African Australopith Sites: Implications for Paleoecological Reconstruction With Trace Elements,

      Sponheimer, M.B.; Lee-Thorp, Julia A. (2006)
      Elemental ratio data from archaeological and paleontological bone have often been used for paleoecological reconstruction, but recent studies have shown that, even when solubility profiling techniques are employed in an attempt to recover biogenic signals, bone is an unreliable material. As a result, there has been renewed interest in using enamel for such studies, as it is known to be less susceptible to diagenesis. Nevertheless, enamel is not immune from diagenetic processes, and several studies have suggested that paleoecologically relevant elements may be altered in fossil enamel. Here, we investigate Sr, Ba, Zn, and Pb compositions of enamel from South African karstic cave sites in an effort to ascertain whether or not this material provides reliable paleoecological information. We compared enamel data for mammals from three fossil sites aged 1.8¿3.0 Ma, all of which are on dolomites, with data from modern mammals living on dolomitic and granitic substrates. Sr/Ca and Ba/Ca are about three times higher in enamel from modern mammals on granites than those living on dolomites, stressing the need for geologically appropriate modern/fossil comparisons. After pretreatment with dilute acid, we found no evidence of increased Sr/Ca, Ba/Ca, or Pb/Ca in fossil enamel. In contrast, Zn/Ca increased by over five times at one site (Makapansgat), but much more subtly elsewhere. Ecological patterning in Sr/Ca, Ba/Ca, and Sr/Ba ratios was also retained in fossil enamel. This study suggests that Sr/Ca, Ba/Ca, and Pb/Ca data likely preserve paleoecological information from these sites, but also demonstrates that geologically similar sites can differ in the degree to which they impart certain elements (Zn in this case) to fossils. Thus, screening is probably necessary on a site-by-site basis. Lastly, further investigation of elemental distributions in modern foodwebs is necessary before elemental ratio analysis can become a common tool for paleoecological reconstruction.
    • Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites.

      Lee-Thorp, Julia A.; Luyt, J.; Sponheimer, M.B. (2007)
      The environmental contexts of the karstic hominin sites in South Africa have been established largely by means of faunal associations; taken together these data suggest a trend from relatively closed and more mesic to open, drier environments from about 3 to 1.5 Ma. Vrba argued for a major shift within this trend ca. 2.4¿2.6 Ma, an influential proposal that posited links between bovid (and hominin) radiation in Africa and the intensification of Northern Hemisphere Glaciation. Yet faunal approaches often rely on habitat and feeding preferences of modern taxa that may differ from those of their extinct predecessors. Here we explore ways of extending 13C/12C data from fossil mammals beyond denoting ¿presence¿ or ¿absence¿ of C4 grasses using the evolution of open environments in South Africa as a case study. To do so we calculated the relative proportions of C3-, mixed-, and C4-feeding herbivores for all the hominin sites for which we have sufficient data based on 13C/12C analyses of fossil tooth enamel. The results confirm a general trend towards more open environments since 3 Ma, but they also emphasize a marked change to open grassy habitats in the latest Pliocene/early Pleistocene. Mean 13C/12C for large felids also mirrored this trend.